轨道交通信号系统(收集3篇)
轨道交通信号系统范文篇1
关键词:城市轨道;信号系统;工程设计;CBTC
1引言
城市轨道交通信号系统是保证列车运行安全,实现行车指挥和列车运行现代化,提高运输效率的关键系统设备。城市轨道交通信号工程造价高,高科技内容含量高,涉及到通信技术、计算机技术、网络技术和远程控制技术等。从事这一领域的企业,要求企业的拥有较高的技术水平和自主创新能力。
2城市轨道交通信号系统方案
一般城市轨道交通线路在城市交通疏解任务中担当非常重要的角色,为满足以上要求,地铁信号系统应采用完整的、先进的、高效的列车控制系统。
(1)正线信号系统采用完整的列车自动控制(ATC)系统,由ATS、ATP、ATO、联锁设备组成。
(2)车辆段/停车场由联锁设备、微机监测设备、ATS分机等主要设备组成。
a)闭塞方式分析
目前城市轨道交通的信号系统主要有准移动闭塞和移动闭塞系统选择。
1.基于目标距离模式的准移动闭塞ATC系统
目标距离模式一般采用音频数字无绝缘轨道电路,具有较大的信息传输量和较强的抗干扰能力。列车车载设备根据由钢轨传输而接收到的联锁、轨道电路编码、线路参数、控制管理等报文信息,对列车追踪运行以及折返作业进行连续的速度监督,实现超速防护,控制列车运行间隔,以满足规定的通过能力。由于音频数字轨道电路传输信息量大,可向车载设备提供目标速度、目标距离(指从占用音频轨道电路始端至停车点的距离)、线路状态(坡道、弯道数据等),使ATP车载设备结合固定的车辆性能数据计算出适合于本列车运行的模式速度曲线。
2.移动闭塞系统(CBTC)
基于通信的移动闭塞列车控制系统技术先进,是列车控制技术的发展方向,代表了国际ATC的先进水平。
独立于轨道电路的高精度列车定位;
连续、大容量的车-地双向数据通信;
车载和轨旁的处理器执行安全功能。
CBTC系统采用自由空间无线天线、交叉感应电缆环线、漏泄电缆以及裂缝波导管等方式实现车-地、地-车间双向数据通信。轨旁ATP设备根据列车的位置信息和进路情况计算出每一列车的移动权限,并动态更新,通过连续车地通信设备发送给列车。车载设备根据接收到的移动授权和自身的运行状态计算出列车运行速度曲线和防护曲线,在ATP子系统的防护下,ATO子系统或人工驾驶控制列车在该速度曲线下运行。后续列车可最大限度地接近前行列车尾部,与之保持一个安全距离。在保证安全的前提下,CBTC系统能最大程度地提高区间通过能力,不受轨道电路区段分割的限制。
虽然CBTC系统在调试时存在一些不尽如人意的地方,但是CBTC系统在具有自身优越性的同时已经成为城市轨道交通信号系统的首选方案。其相对于准移动闭塞系统的优越性是不可取代的。
4城市轨道交通信号系统构成
信号系统设备按地域划分可分为控制中心设备、车站与轨旁设备、车辆段和停车场设备、维修中心设备及车载设备五部分。
控制中心的设备主要是ATS子系统的中央级设备及显示终端设备。
a)控制中心设备(ATS)
1.控制中心ATS系统
信号系统的控制中心设备设于控制中心大楼内,是列车自动监控系统(ATS)的核心部分,设冗余ATS服务器,网络时钟服务器、总调度长及行车调度员工作站、综合显示系统、中心计算机系统、运行图编辑工作站、维护工作站、培训模拟工作站、网络设备及电源设备等。
(1)ATS服务器
信号设备室设置中心计算机系统,包括ATS系统中心控制主机、中心通信处理器、中心数据服务器、中心局域网及各自配备的外部设备。为了保证系统的可靠性,上述主要硬件设备采用双机热备方式。
(2)调度长及行车调度员工作站
根据车站及线路配置情况及行车组织要求,一般情况下在控制中心中央控制室各线设置3个行车调度工作站,其中两个行车调度员工作站,一个调度长工作站。
在运行图室设置运行图编辑工作站及相应的打印设备,用于运行计划人员编制及修改列车运行时刻表,通过人机对话可以实现对运行时刻表的编辑、修改及管理。
(4)维护工作站
在维护室设维护工作站。维修工作站主要用于ATS系统的维护及修改系统数据、ATC系统的故障报警处理等。
(5)培训、模拟工作站
在培训室设置培训、模拟工作站及打印机,工作站内配有各种系统编辑、装配、连接和系统构成工具以及列车运行仿真的软件。可与调度员工作台具有相同的显示内容和相同的控制功能,并能实际仿真列车在线运行及各种异常情况,而不参与实际的列车控制。
(6)绘图仪和打印机
打印室配备两台彩色激光网络打印机和一台网络绘图仪,用于输出运行图及各种报表。
(7)控制中心综合显示屏(大屏幕)
综合显示屏显示的信息及实现的功能:
实现正线列车运行及信号系统设备状态的监视
显示行车信息
CCTV图像
行车、防灾、电力调度等有关的综合信息
其显示内容采用区域显示方式,并可根据调度的要求调整显示画面。
(8)电源设备
电源室设置ATS电源系统,包括为ATS设备正常工作提供电量的电源屏及在线式UPS,可提供30分钟后备电源的免维护电池。
2.车站ATS设备
正线车站ATS设备设在设备集中站,由车站ATS分机、通信接口设备、车控室操作设备等组成。
(1)车站ATS分机采用数据通信接口设备,该设备为双套冗余。
(2)车站工作站由键盘及彩色显示器组成,当中心设备故障或下放控制权时,车站工作站可完成对进路、信号机的控制。
(3)通信接口设备与通信传输设备配合完成车站ATS与中心ATS间信息传输及各种通信。
(4)发车指示器,设在发车站台端部。
3.车辆段、停车场ATS设备
(1)车场信号设备室设一台ATS分机,与车场联锁系统接口。
(2)行车值班室和车辆派班室各设一台终端以及必要的打印机。
(3)与OCC(控制中心)通信的传输网及其接口。
b)车站与轨旁设备
1.正线设备集中站室内设备包括联锁设备、ATP/ATO设备、车地双向通信室内设备、列车空闲检测设备、ATS车站设备、电源设备等。
2.站台设备包括发车时间指示器、紧急停车按钮、PIS系统。发车指示器:设置于发车正方向站台端部,每站台1个。紧急停车按钮:每侧站台设置2个,设置位置应便于紧急情况下的使用。
3.轨旁包括转辙机、信号机、列车占用检查设备、车地通信设备等。
4.在非设备集中站,将主要设置电缆分线架、安全门接口设备、ATS接口设备、轨旁信号机等。
5.在全线所有车站的控制室设紧急后备盘。在车站值班员认为必要的情况下,可通过按压紧急后备盘上的有关按钮。
6.对于联锁设备集中站,在车站控制室还应设置用于车站级控制的控制工作站,用于在车站级控制情况下,能对本联锁区内的信号元素进行监控以及故障报警。
(1)设备集中站的设置
综合考虑联锁设备、ATP、ATO和ATS车站设备的控制能力及控制距离的要求,正线区段的ATP/ATO室内设备原则上集中设置于设备集中站。设备集中站的设置及控制范围需结合线路具体情况及运营需求统筹考虑,此处不再赘述。
(2)轨旁ATP/ATO设备
1)轨旁骨干网
信号系统利用光纤及通信设备自行组建用于安全信息交换的冗余的通信网络,网络应符合开放的IEEE802.3标准。该网络也可以传输ATS信息。
2)车-地通信轨旁设备
轨旁设备包括轨旁设备、区间接入点设备、天线以及连接这些设备的光缆及电缆等组成。区间接入点与骨干通信网的连接应是冗余的。
区间接入点的布置位置及数量应该满足任意区间点的无线重叠覆盖,即任何单个的区间接入点故障不影响车-地的正常通信。
3)地面信标
信标是CBTC的重要组成部分,其作用为:
列车位置初始化,即运行方向判定;
列车位置校准;
轮径磨耗自动补偿;
根据目前市场实际情况,有欧标和查询信标两种方式可供选择:欧标应答器具有更强的数据传输能力并且适应更高的速度,并且进行了国产化。查询信标具有价格优势。
(3)正线联锁设备
联锁设备设于设备集中站,按照车站配线及控制范围考虑联锁集中站,主要包括计算机联锁设备及设备机架,完成信号机、进路、道岔的联锁等功能。
1)正线区段信号机的显示方式符合该项目所在城市地铁相关规范的要求并考虑CBTC系统的实际情况。
通常正线区段地面防护信号机的显示方式如下:
红灯―禁止通行,列车在信号机前停车;
绿灯―进路开通道岔直向位置,准许列车按规定速度运行;
黄灯―进路开通道岔侧向位置,准许列车按规定的限制速度运行;
黄灯+红灯―引导信号,允许列车以不大于25km/h(具体根据运营要求确定)速度越过该信号机继续运行,并随时准备停车。
2)全线设辅助列车检测设备,采用计轴设备。
(4)车载设备
每列车原则上配备两套车载ATP/ATO单元。包括车载ATP/ATO主机机柜、速度传感器、控制显示单元以及车地通信天线等主要设备。每套ATP/ATO车载设备的关键设备均采用冗余结构。两套车载单元互为热备,热备切换时不能影响列车的正常运营。
人机界面的主要内容包括:
列车实际速度/最大允许速度显示
目标距离/速度显示
驾驶状态(动力运行、惰行和制动)显示
驾驶模式(ATO、人工ATP、限速人工、自动折返)表示
ATO模式启动按钮
自动/人工关门开关及表示
列车折返表示
列车停车精度(到位)情况
门表示(含司机室车门)及控制元件
紧急制动的启动表示
ATP/ATO故障表示
驾驶员输入有关数据(轮径、乘务组号、车辆号、目的地号等)
列车完整性表示
(5)在运行交路的折返站,将考虑在站台设有折返按钮和折返设备,实现列车折返或车载设备驾驶端的自动转换。
c)系统后备模式设备
正线ATC系统在通信设备故障时可全部或局部按照设定的后备模式(限制人工驾驶模式)运行。后备模式通过计轴、发车表示器、信号机、联锁、应答器及相应编码设备等设备完成对列车的运行控制。
在线路上的每架信号机、道岔以及各车站正向出站处附近设置计轴设备,用于轨道空闲的检测,在移动闭塞ATC系统通信故障时,降级为后备模式,联锁系统利用这些设备配合ATP和机车信号控制列车安全运行。
d)车辆段、停车场设备
车辆段/停车场信号设备主要有车场ATS分机、联锁设备、监测设备、试车线设备、培训设备及日常检修和检查等设备。行车控制室设有计算机联锁监视、操作终端设备和ATS工作站。通过ATS工作站可监视出入段线和正线部分的列车运行情况。
1.车场ATS设备
(1)车场信号设备室设一台ATS分机,与车场联锁系统接口。
(2)行车值班室和车辆派班室各设一台终端以及必要的打印机。
(3)与OCC通信的传输网及其接口。
2.联锁设备
计算机联锁室内设备主要包括联锁机柜、接口柜、防雷柜、继电器柜、分线盘设备和UPS电源等,电源室设有智能电源屏。设备室同时设有计算机监测的下位机设备和维修监测工作站等。
3.试车线设备
在试车线旁设置试车设备室和控制室,装设与正线相同的ATP、ATO室内设备,轨旁设备以及相应的试验设备。
室内设备包括:试车线工作站和控制盘、ATP/ATO线路计算机设备、电源屏及UPS电源等,同时还应包括与屏蔽门接口的模拟设备。
室外设备包括列车占用检查设备、车地通信设备、信号机。
试车线上的道岔和道岔防护信号机均由车辆段联锁系统控制。作为信号楼联锁控制的一部分。
4.计算机监测设备
车辆段/停车场站场较大,养护维修工作量较多综合考虑设置铁道部统一标准的微机监测系统,该系统在国铁中已全面采用,并可与计算机联锁系统紧密结合。
轨道交通信号系统范文篇2
关键词:城市轨道交通;信号系统;互联互通
中图分类号:TL372文献标识码:A
所谓城市轨道交通的“互联互通”,是指列车可以在包含不同厂商设备的线路或网络中安全运营。若买现路网间的联通、联运,轨道交通的建设、运营、管理就可以买现资源共享,减少轨道交通的建设、维修和运营成本等优点。还有利于不同车辆的共线混跑;有利于不同线路的车辆综合备用;有利于线路改造及延长。
1城轨互联互通实现的条件
城市轨道交通线路之间运营互联互通是一个系统工程,涉及土建、轨道、车辆、行车组织、供电、信号、安全门/屏蔽门等多个专业,需要各线路统一标准,协同配合才有可能买现(如图1)。
2城轨信号系统互联互通的优点
可以独立于轨旁设备,自由的采购车载设备;列车能够在多条线路上运行,而只装备一套车载ATC设备;对于既有线路的延长,能够有具有竞争力的报价;可提供替代设备的供应商数量增加;降低了信号系统全生命周期成本;由于标准化,降低了培训的成本。
3城轨信号系统互联互通方案
目前,随着我国城轨信号系统核心技术设备从自主研发已走向成熟应用,使得我国城轨信号系统之间实现互联互通已不再是雾里看花,根据国铁互联互通成功实施的经验,城轨实现互联互通已完全成为可能。但我们需要清晰地看到目前已经研发出来的几家国产化信号系统由于设计理念和设计标准的不统一,使得虽然实现的系统功能基本相同,但系统的结构、子系统的功能分配、子系统间的接口等存在着诸多的不同点,这就需要制定统一的信号系统互联互通相关标准,结合各家的开放的接口,进行二次开发,实现真正意义上的信号系统互联互通。
3.1从众共性的基础设备
实现城轨信号系统互联互通首先要实现基础设备的设计标准的统一,基础设备的统一是互联互通的前提条件、基础设备的统一不是狭义的统一生产厂家,而是统一基础设备的类型、性能和设计规范统一基础设备采取的原则为“从众共性”的原则,保证基础设备的选择满足大多数供货商的设备选型需求,从而减少大多数供货商实现互联互通的工作量和实现难度。基础设备主要包括:整理基础设备(包括信号机、计轴、转辙机等)、应答器、无线通信设备等。
3.2统一标准的信号系统解决方案
3.2.1互联互通需求分析
在实现信号系统间的互联互通前,必须统一地进行功能需求分析,所有需要互联的子系统必须有统一的功能需求书。然后通过功能需求细分,进而将整个信号系统的功能变成各子系统的功能,从而得到大家都认同的系统需求书,并对系统间的接口进行详细定义。按照目前信号系统的组成,大致可以分为轨旁系统、车载系统、车地通信系统和列车自动监督系统、实现互联互通的基础是列车和轨旁ATP的相互通信和安全功能的共同实现,还有列车和ATS系统的相互通信和非安全调整功能的共同实现。可以通过系统功能分配,建立各子系统需求书。
(1)车载系统需求
线路间识别能力;存储所有线路的地图数据,且和轨旁系统的地图数据必须完全兼容;同一类型车载系统可以和不同供应商提供的轨旁ATP通信;车载系统和不同供应商提供轨旁系统的数据交换可以保证列车的运行安全;车载系统可以适应不同类型的列车性能和线路条件,保证列车安全和列车自动运行。
(2)轨旁系统需求
同一类型轨旁ATP系统可以和不同供应商提供的车载系统通信;和不同供应商提供车载系统的数据交换可以保证列车的运行安全;和不同供应商提供车载系统的地图数据必须完全兼容;和不同供应商提供轨旁系统的数据交换可以保证列车在跨区时运行安全。
(3)车地通信系统需求
车地通信系统必须是选明传输;必须建立统一的开放标准和协议,并采用共同认可的整理制式、
(4)ATS系统需求
ATS系统可以和不同供应商提供的车载系统通信;和不同供应商提供车载系统的数据交换可以保证列车的运行调整;可以识别不同供应商提供车载系统的位置报告;可以和不同供应商提供轨旁ATP系统通过整理标准进行通信。
3.22互联互通接口要求
CBTC系统是模块化设计的现代化系统.提供了灵活的接口。图2展示了互联互通接口
(1)通信接口条件
CBTC互联互通包括以下通信接口:
车载设备与轨旁ATP设备接口;轨旁ATP设备与相邻轨旁ATP设备接口;ATS与轨旁ATP设备接口;ATS与车载设备接口。
(2)轨旁连续式通信
建议轨旁连续式通信系统依据开放无线局域网(WLAN)标准,并以选明传输方式支持所有IP协议。对于ATC设备,车地通信系统就像是两个冗余的标准连接的路由器。连续通信系统允许如下的直接通信:车载系统和ATS系统;车载和轨旁ATP系统。连续式通信系统必须完全独立于ATC系统,只是为ATC系统提供一个传输通道。
(3)轨旁点式通信
根据国内业主的需求和互联互通的需求对应答器报文预留字段的补充定义,制定统一的国内应答器报文标准。使用主流产品S供应商提供的欧式应答器即可实现互联互通。
3.2.3统标准的信号系统解决方案
目前轨道交通信号系统通常具有三种控制级别,分别是联锁控制等级,点式控制等级和连续式控制等级。从这三个等级方面,各家信号系统供应商可以通过统一的标准来实现信号系统的互联互通。互联互通标准按照控制等级可以划分为联锁控制等级互联互通标准,点式控制等级互联互通标准和连续式互联互通控制等级标准。这些标准制定的完成和信号基础设备的统一将成为互联互通实现的关键。
(1)联锁控制等级互联互通标准
联锁控制等级属于互联互通标准中最低等级的标准,其他两个等级能够向下兼容本控制等级,由于本控制等级只由基础的信号设备构成,因此基础的信号设备及信号设计的统一即能满足本控制等级的互联互通,例如统一信号机的显示制式,统一设计保护区段、接近区段等,因此本控制等级最容易实现互联互通,该控制等级能够满足装备列车和非装备列车混跑的功能需求。由于没有车载ATP的防护,这种互联互通方式效率和安全性比较低。此方式只运用到非运营时段的列车跨线调车中。
(2)点式控制等级互联互通标准
点式控制等级是基于点式应答器及轨道检测设备的列车运行控制信息的点式系统,本控制等级的信号设备是通过联锁控制等级增加点式信号设备来实现点式控制等级,点式控制等级的地面设备由轨道检测设备、点式应答器设备、联锁设备以及列车自动监督设备组成,车载设备由车载ATP设备及设备构成。速度传感器、HMI、信标天线等),系统的机构如图3所示。
互联互通需要确定和分配的主要功能如下:
列车定位功能;点式下列车安全防护功能(包括接近锁闭和解锁,保护区段锁闭和解锁,进路和道岔保护等);点式下的屏蔽门联动功能;点式下的临时限速功能;点式下列车自动驾驶功能。
其中列车定位和列车安全防护功能是强制需求,其他功能是可选需求,可以根据具体用户需求确定。对于上面的功能实现,需要各供应商共同协商和制定统一的功能需求书和接口说明书。
对于点式下的互联互通由于关键接口比较少,车地设备相对较独立,相对于CBTC模式下实现互联互通在统一功能需求、系统需求以及接口需求方面都相对容易实现。采用欧式应答器标准,效仿欧洲的URTMS根据国内的需求出具统一报文标准,便可以方便享用互联互通成果,如与干线铁路、市郊铁路和城际铁路联通联运。而且可在最终实现连续式ATP的互联互通之前,率先实现在点式ATP上的互联互通。
轨道交通信号系统范文篇3
关键词城市轨道交通,信号系统,设计方案
城市轨道交通的信号系统担当着控制和指挥列车运行的任务,是影响整个城轨交通系统运营安全和效益的关键点。信号系统的水平也成为城市快速轨道交通现代化的重要标志。设计出一个优秀的系统方案不仅有利于保证行车安全,提高运输能力,实现迅速、及时、准确的行车调度指挥和运输管理现代化,提高服务质量,而且还有利于合理使用工程投资,降低工程造价。
1系统构成方案
城市轨道交通是一个技术先进,具备相当程度自动化水平的运输体系。其中信号控制系统的构成必须与整个交通运输相适应。
在《城市快速轨道交通工程项目建设标准—试行本》中,把信号系统划分了三个层次:第一层次设备在运量较小、行车密度较低的线路上,可配置联锁设备、自动闭塞、机车信号和自动停车系统;第二层次设备在运量较大、行车密度较高的线路上,可配置列车自动监控(ats)系统和列车自动防护(atp)系统;第三层次设备在运量大、行车密度高的线路上,配置列车自动监控系统、列车自动防护系统和列车自动运行(ato)系统。wWW.133229.COm
上述第一层次系统配置属最低水平等级,只适于行车间隔大于3min的线路运用。也就是说,在行车密度较高时,这种线路将面临整个系统的改造,造成大量的废弃工程;另一方面,由于机车信号和自动停车装置所能容纳的信息量少,列车运行的安全性很大程度上只能依赖于司机的驾驶;然而其国产化率水平是最高的,工程造价是最低的。应该说,该层次的设备适宜在近期运量小、行车密度低,而且远期运量无明显变化的工程,如在中等城市或是郊区轨道交通系统中运用。
第二层次的信号系统配置,适于行车间隔在2min以上的线路运用,行车安全可以完全由列车自动防护系统来保证。虽然其国产化率水平降低,工程造价增高,但是该层次设备技术先进,便于向第三层次扩展,不存在明显的废弃工程,符合工程按近远期分步实施、合理预留的原则,所以系统的综合经济指标是合理的。这种系统能适应大多数城市轨道交通的运用需要,是大运量的城市轻轨交通的首选方案。
第三层次的系统配置具备很高的现代化技术水平,适于行车间隔小于2min的线路运用,不仅行车安全可以完全由列车自动防护系统来保证,而且列车自动运行系统还可以完成站间自动运行、定位停车,接收控制中心运行指令,实现列车运行自动调整,使整套信号系统能够满足列车高速、高密度运行的需要。这种系统的国产化率水平低,工程造价高,是其在工程运用中不利的一面,但系统高水平的自动化程度无疑将给日后的运营、管理带来巨大的经济和社会效益;另外,由于安装屏蔽门对列车精确定位停车功能和大运量对列车高折返能力等等方面的具体需求,这种线路的运行都要由列车自动运行(ato)系统来保证。所以只要条件许可,在城市轨道交通中,特别是高运量的地铁工程中,该系统方案非常值得推荐。
2主要技术方案
2.1设计行车间隔
城市轨道交通工程为适应乘客运量大、行车密度高的特点,往往采取缩短行车间隔的办法。这样一方面有利于减少旅客候车时间以提高服务质量;另一方面可以减少列车编组辆数,节省工程投资。但是由于信号atp系统技术的限制,如轨道区段的长度、“车-地”通信的有效速率、列车进路的建立和恢复时间等等因素,正常的行车间隔不可能无限制缩短。换言之,最小行车间隔极大地影响着信号的atp系统方案和工程造价。确定合理的行车间隔时分成为信号atp系统方案设计的控制参数。
根据一些发达国家城市轨道交通的运营经验,信号atp系统可按满足高峰运营流量130%的能力标准进行设计。也就是说,如果线路的客流量在某个特殊时段增加到预测高峰值的130%时,atp系统仍有能力满足运营采取的临时措施,如临时增加运营列车等。表1以某一条线路运营方案为例予以说明。
两种方案均可满足运量要求,但它们的运能余量,即单向运输能力与高峰小时单向最大断面客流量比是不同的。其中方案a为1.00,方案b为1.08。那么,如果按方案a实施,在高峰时间内的线路运营将处于全饱和状态,按上述标准设计相应的atp系统应采用184s的设计行车间隔;如果按方案b实施,在高峰时间内的线路运营尚有8%的调节余量,相应的atp系统只需采用245s的设计行车间隔。显而易见,从信号系统的设计角度来看,方案b优于方案a。
应该指出的是,ats系统所具备的行车间隔调控能力与上述的atp的设计行车间隔能力是有区别的。ats对列车运行的调控主要是当列车运行秩序有紊乱时,通过控制列车停站时分而使列车运行秩序尽快恢复的一种措施。当然,这种调控能力的实现也是要体现在atp行车间隔能力上的。
在实际的工程运用中,应结合线路近、远期运量,以及工程实施方案、ats调控能力等综合因素,确定一个合理的满足运营要求、节省工程投资的设计行车间隔。
2.2atp信息传输方式
atp系统是确保列车运行安全的关键设备,它由轨旁设备和车载设备组成,列车通过地面atp设备接收运行信息,实现列车的间隔控制。atp设备主要有两种划分方式,一是按“车-地”atp信息传输方式分为连续式和点式发码方式;另一种是按对列车控制方式分为模式曲线方式和阶梯式控制方式。其中按前一种划分的两种atp设备工程造价差异大,是选择atp系统方案的主要比较点。
连续式的atp设备一般可利用轨道电路或连续敷设的电缆向车载接收设备连续不断地传递地面信息。其特点是信息传递实时性高、技术复杂、造价昂贵。点式atp设备利用地面应答器或点式环线把地面信息传至列车。这种方式实时性较差,但技术简单、造价低廉。
控制实时性较差高行车间隔大于90s可小于90s自动驾驶功能尚无产品有列车检测功能需另设轨道电路有系统扩展对行车干扰较小对行车干扰大安装调试周期较短周期长工程造价较低高维修成本低高生产厂家少多
在我国现有的地铁交通中,由于运量大、行车密度高、地铁隧道内驾驶条件较差等特点,均采用连续发码方式的atp系统是适宜的。
随着点式atp技术的发展,在城市轨道交通工程,特别是城市轻轨工程中采用点式atp设备显得越来越合理。在点式atp系统中,以目前较有代表性的西门子公司zub120为例,其主要的技术指标如下:
·传输制式移频键控(fsk),串行
·传输速率50k·-1
·传输间距130~210mm
·电码可靠性循环码多次判断,海明距为4
·电码长度可编程有用比特96位
·机车设备平均故障间隔时间2×104h
·地面应答器平均故障间隔时间9×105h对于点式系统控制实时较差、缺乏紧急停车功能等缺点,则可以通过接近连续式发码方式进行弥补。上海莘闵轻轨交通线作为我国第一条城市轻轨线路就已按点式atp系统进行设计。另据西门子公司介绍,目前该公司新研制的点式atp系统不仅打破了90s行车间隔的限制,也具备了自动驾驶功能。
3小结
在实际的工程运用中,结合工程具体情况就不难设计出优秀的系统方案。例如:在天津市区至滨海新区轻轨工程招标中,我方依据轻轨客运量近、远期分别为18.4万人次/日、28.4万人次/日,列车运行近、远期3min的追踪间隔,以及列车4列、6列的不同编组,首先确定的投标方案中设计行车间隔为135s,采用点式atp和国产ats,预留ato方案;而结合本线列车运行速度高达100km/h,列车制动距离长的特点,从保证行车安全、节省工程造价的角度出发,我方又推荐了采用模拟无绝缘轨道电路加连续式环线的atp方案。两种方案的技术论证受到了评判专家组的一致好评。
总之,在系统构成和主要的技术方案确定以后,信号系统虽已基本定型,但要真正全面地设计出一个良好的系统,还有许多细节需要考虑。例如:为发挥投资效益,根据城市轨道交通工程近、远期不同的建设规模和标准,信号系统的配置应考虑按不同阶段的运量要求分步实施、合理预留,并使之容易进行技术改造和升级;信号系统设计方案中应充分考虑到国家对机电设备国产化率的要求,除某些必须引进的设备外,尽量选用国产设备或与引进国外技术国内组装相结合的方式。
另外,城市轨道交通信号系统的特殊技术指标也是应在设计过程中重点考虑的问题。如在长大坡道上设立的保护性延续进路对列车运行追踪时分的影响;为缩短折返进路建立时间,如何处理折返进路有关的渡线道岔等技术问题。