焊接技术的方法(6篇)
焊接技术的方法篇1
中国石油天然气管道局第三工程分公司第三管道工程处河南郑州451450
摘要伴随着我国能源结构的调整,天然气在我国能源中所占的比重也越来越大。作为天然气运输主要途径的天然气管道建设总长也在不断增加,一些天然气管道建设中的新技术也在不断的出现和运用。焊机天然气管道建设中发挥着至关重要的作用,也是一项非常常见的应用技术。天然气管道建设的发展对焊接标准及技术都有了新的要求。
关键词焊机技术;天然气管道;应用
最近几年,随着我国对天然气用气量需求的加大,我国的天然气管道的建设也随之也随着加快了建设步伐。伴随着天然气管道建设速度的加快,天然气管道的施工技术也在不断的提升。下面就这几种不同的焊接技术在我国天然气管道建设中的实际应用一一进行说明。
1天然气管道焊接时的手工焊接技术及应用
手工电弧焊下向焊技术可具体分为纤维素焊条和低氢型焊条下向焊。相对传统的天然气管道焊接技术来说,手工下向焊是比较先进的手工焊接技术,手工下向焊因为采用大钝边、小间隙、小坡口角度的技术参数,使天然气管道工程加快了焊接速度,并且焊接的质量比较好,对焊接材料浪费少,加之操作难度不大,进行焊接时的抗风能力也很强,应用十分广泛。淤纤维素下向焊在天然气管道焊接中的应用。纤维素下向焊的显著特点是根焊的适应性极强。纤维素下向焊的焊接工艺有很大的熔透能力,与此同时纤维素下向焊能很好的填充连接处间隙,焊缝背面成形也比较平整,而且气孔敏感性很小,极易形成质量很高的焊缝,在钢材为X70以下的薄壁大口径管道上主要应用的焊接工艺就是纤维素下向焊。纤维素下向焊要注意防止产生冷裂纹。因为纤维素下向焊的焊条熔敷金属扩散氢含量高,不易控制预热温度和层间温度。于天然气管道手工焊接的另一种工艺就是低氢下向焊。利用低氢下向焊工艺进行焊接的管道接口具有较好的抗冷裂纹性和冲击韧性,焊缝质量相对较高,在焊接天然气管道中比较重要的部件时应用较多。低氢下向焊工艺的缺点是进行焊接时熔化速度较慢,对从事焊接的工人技艺要求比较高,不易掌握焊接时机。低氢下向焊根焊的适应性相对于纤维素焊条要差一些,所以常被用于填充盖面等部位的焊接。
2半自动焊接技术及应用
半自动焊接技术是我国从美国引进的自保护半自动焊设备和工艺,引进后陆续应用于国内外的一些天然气管道施工中使用,技术日渐成熟,也是目前天然气管道施工中重要的焊接方法。半自动焊焊接工艺效率高、劳动强度低、质量好等优点,而且焊接工艺相对较简单,从事焊接的技术人员易学习掌握。缺点在于根焊时焊缝质量不能够得到保证,所以在天然气管道施工中的半自动焊接技术主要用于管道的填充和盖面焊道等方面。目前常见的主要有:淤CO2活性气体保护焊技术。半自动焊接技术CO2活性气体保护焊是一种高效、优质的天然气管道焊接技术。对根焊部位主要采用STT半自动焊进行焊接,这种焊接通过控制基值和峰值电流及电压,熔滴过渡成型非常有利,焊接过程稳定,能够很好地解决飞溅问题及大口径管道根部焊环节单面焊双面成型的难题,而且在全位置单面焊双面成形的打底焊也同样有很好的效果。半自动焊中的STT型CO2半自动下向焊技术工艺具有电弧稳定、飞溅少、速度快、韧性好等一系列的优点,但在进行STT型CO2半自动下向焊时,需要有相应的防风措施,要求现场风速不能大于2m/s。于天然气管道焊接的自保护药芯焊丝半自动焊。所谓的自保护药芯焊丝半自动焊,就是把焊药填灌在管状焊丝的内部,不需要保护气体就可以进行的一种焊接技术。在冶金过程利用管状焊丝中所含合金元素及焊药中保护熔池,彻底清除熔池中氮所造成的不良影响,得到合格的焊缝。这种焊接工艺具有性能优良、熔敷效率高、环境适应能力强等一系列优点,加之焊接成本相对较低,而且焊接技术简单,焊接合格率高。这种焊接技术的缺点是焊根熔合不易,仅仅在填充和盖面时有所运用。
3自动焊技术及应用
天然气管道的自动焊就是指使用一定的工艺和技术使整个焊接过程实现自动化,常用的是机械方法和电气方法。自动焊技术焊接效率高、进行焊接工作的劳动强度较小,焊缝稳定可靠,质量可靠,进行焊接时几乎不受人为操作因素影响,所以在焊接大口径管道和厚壁管道时使用非常方便,发挥了极大的作用。但是全自动气体保护焊设备昂贵,后期修理、维护不易操作,根部焊接也有局限性,所以全自动气体保护焊并未大规模应用于天然气管道焊接。现阶段常用的自动焊技术主要有:淤实芯焊丝气体保护自动焊接。这种自动焊是在可熔实芯焊丝与被焊金属间形成电弧,强大的电流把焊丝熔化,并与母材相结合形成焊缝,从而实现管道焊接。这种自动焊接技术工艺易于掌握,广泛应用大口径、大壁厚的管道焊接领。但缺点是进行焊接时,需要有较高的焊接装备及控制系统,而且对现场的风力有一定的要求。于药芯焊丝自动焊接。药芯焊丝自动焊有两种类型,分别是药芯焊丝自保焊和药芯焊丝气保焊。这种自动焊的原理和实芯焊丝气体保护焊基本相同。区别在于,药芯焊丝熔敷的速度很快、焊接的接缝韧性好、在不同的场合适应性也不错。盂电阻闪光对焊。电阻闪光对焊是利用低电压和强电流,使得要焊接的连接管两管端在极短的时间内达到极高的温度,利用蒸发金属保护焊接区域,进而用顶锻压力使熔化的管端形成连接接头,达到焊接目的。电阻闪光焊接技术工艺、焊接效率很高,也能很好的适应不同的环境,焊接质量好。但是电阻闪光对焊设备庞大且昂贵、针对性强,对焊缝无法进行标准的无损检测。所以并未在天然气管道施工焊接中得到普及。
天然气管道焊接时的焊接质量、焊接效率和焊接技术水平与天然气管线建设的质量密切相关,鉴于天然气管线本身的特点,在进行管道焊接时,一定要结合现场的实际情况,正确的选择合适的焊接技术,保证焊缝质量,确保天然气管道的安全。对于新的天然气管道焊接技术,要严格按照相关的操作规范来进行。对出现的问题,要认真研究,及时总结、处理,坚决避免因操作失误而造成的损失。
参考文献
[1]陆文清,张扬军,蒋云峰.简谈天然气管道安装焊接技术的应用[J].民营科技,2008(4):35-36.
焊接技术的方法篇2
焊接技术和其它制造技术一样,对于我国工业和国防建设的影响是巨大的。焊接的分类有多种,各种焊接技术使用的能源和方式方法都不同,因此其每一种焊接技术的过程是千差万别的。为了发现焊接构件和焊缝中的焊接缺陷、避免或减少焊接缺陷的产生、保证焊接结构与产品质量及装备安全,应进行焊接检验,它是按照规范条例来控制焊接质量的关键手段。
近年来,我国的经济发展很快,制造业发展突飞猛进,我国汽车的年产量已连续3年都是产销量全球第一,国外的政府、企业和媒体都公认中国已经成为了制造大国。从制造大国迈向创造大国,是我国发展创新经济、进一步提升经济实力、造福人民的重要举措,学习和吸收先进制造技术是其中必不可少的步骤。焊接技术是机械制造行业中的关键技术之一,我国40%以上的钢都用于制造不同的焊接结构,在石油、天然气、煤炭等能源工业中的诸多领域以及核能、热能装备中,焊接都是最主要、最关键的技术。2013年,我国的辽宁号航空母舰正式列装海军了,其中新华网的一则报道引人深思:“监造航母过程中,有数千公里的焊缝需要检验。遇到狭小舱室和管路通道,军代表们需要钻进去爬行检验探伤,确保不留任何安全质量隐患”。这充分说明焊接技术和其它制造技术一样,对于我国工业和国防建设的影响是巨大的。现实要求我们认真学习、掌握先进的焊接技术,同时也要不断探索新的焊接方法、创新技术,更好地为国民经济服务。
焊接技术
焊接的定义及特点:无论是大的工程(如航天、飞机、舰船),还是小的项目(如电视机、电饭锅),其各部件都需要用到连接。一般的连接方法有胶接、机械连接、焊接等,而焊接属于永久性连接方式,它是对两种或两种以上的材料,通过加热或加压或者两种方法并用,使得接头处产生原子或分子间的结合和扩散,从而造成永久性联接的一种工艺过程。相对于铸造、铆接、锻造来讲,焊接结构有几点明显的优点:
构造很合理,接头连接效率高;密封性能好,适于制造各类容器,包括压力容器;制造周期短、成本低,经济效益较好;焊接结构重量轻,简化了结构;板厚限制小;设计灵活、简单;可适用于各种不同的金属结构。
焊接的分类:焊接一般分为熔焊、压焊、钎焊三种,其中熔焊和压焊很好理解,都是采用熔化或加压方式完成焊接的方法,钎焊则是采用比母材熔点低的金属材料作为钎料,利用液态钎料填充接头间隙,并与母材互相扩散形成连接焊件。钎焊的最大特点是不需要熔化母材,它包括炉中钎焊、电阻钎焊、感应钎焊、火焰钎焊、烙铁钎焊、盐浴钎焊等。压焊有以下几类:电阻点焊、电阻对焊、电阻缝焊、超声波焊、锻焊、冷压焊、摩擦焊、爆炸焊、扩散焊等;现今使用较普遍的是熔焊,它包括气焊(含氧乙炔焊、氧丙烷焊、氧氢焊)、电弧极焊(有熔化极、非熔化极)两大类以及激光焊、电渣焊、电子束焊。当然,细分下去还有各个子类别,如熔化极焊接中又有CO2气体保护电弧焊、手工电弧焊、埋弧焊、螺柱焊、熔化极氩弧焊、药芯焊丝电弧焊。
焊接过程:焊接的分类有多种,各种焊接技术使用的能源和方式方法都不同,因此其每一种焊接技术的过程是千差万别的,我们以熔化焊为例来简单介绍焊接的工程。对于钢铁材料的熔化焊来说,其焊接工程归纳为三个局部过程,但这三个过程是相互联系又相互交叉的:首先是焊接热过程,即被焊金属在热源作用下被加热和局部熔化,此时在被焊金属中存在着热量从高到低的传递和再分布现象;第二个过程是焊接化学冶金过程,此时,熔化金属、熔渣、气相之间进行着一系列化学冶金反应,包括金属氧化、还原、渗合金、脱磷、脱硫、焊缝金属氮化、与氢的作用,该反应直接影响焊缝金属成分、组织以及性能,是造成焊接质量高低的重要因素。第三个过程是金属结晶与相变过程,此时热源离开,熔化金属开始结晶,金属原子转为远程有序排列,金属由液态变为固态,甚至有的金属还会发生固态相变。由于焊接的快速冷却造成焊缝金属的结晶和相变都具有各自特点,在冷却过程中往往会产生气孔、淬硬脆化、偏析、热裂纹、冷裂纹、夹杂等缺陷,所以控制和调整焊缝金属结晶与相变过程也是影响焊接质量的一个关键环节。
焊接检测
焊接缺陷:焊接检测目的是发现焊接缺陷。焊接缺陷是指焊接接头中的不连续性、不均匀性以及其它各种不完整性,有时也叫焊接欠缺。我们介绍焊接缺陷几种常见的形式、形成原因和应对方法:
焊接变形和焊接应力。焊接接头局部位置加热与冷却是不均匀的,局部位置的各部分金属处于从液态塑性状态弹性状态的不同状态,并随着热源和温度的变化而发生变化,因而在焊接过程中产生了焊接变形和焊接应力。焊件降温到室温时留存在焊件中的变形和应力一般称为焊接残余变形和焊接残余应力。焊接变形会降低组装件装配质量、造成焊接错边、降低接头性能和结构承载能力,易产生附加应力,增加制造成本。其应对措施为合理设计、减少焊缝数量及尺寸、预留收缩量、反向变形、刚性固定等。焊接应力会降低结构强度、稳定性、疲劳强度,增加构件脆性断裂概率,减少焊接应力一般的方法有合理设计、减少焊缝尺寸和长度、避免焊缝过分集中、采用刚性较小的接头形式、缩小焊接区与结构整体的温差、采用合理的焊接顺序和方向等等。
焊接技术的方法篇3
关键词焊接;技术特征;发展趋势
一、我国焊接技术发展的现状分析
焊接作为组装工艺之一,通常被安排在制造流程的后期或最终阶段,因而对产品质量具有决定性作用。焊接是一种低成本、高效益连接材料的可靠工艺方法。到目前为止,还没有另外一种工艺比焊接更为广泛地应用于材料间的连接。在国内,焊接材料和焊接设备的生产量日益增加,从焊接材料的制造技术和焊接设备的发展上看,我国现化焊接技术已有很大发展,其中有些产品技术已接近或达到国际先进水平,如逆变式焊机技术。因此无论就目前和以后的发展来看,焊接技术都是加工各种材料使其增强市场竞争力的首选工艺。焊接技术已发展成为融材料学、冶金学、热处理学、力学、自动控制学、电子学、等学科为一体的综合性学科,它从单一的加工工艺发展成综合性工程技术,它和压力加工,金属切削加工,锻造,热处理等加工方法一起构成了现代金属加工工艺的主流,它涉及到材料,结构设计,电源设备,下料,成型,焊前和焊后的处理,生产过程自动化和机械化,质量检测,失效分析,卫生与安全,环境保护等众多领域。焊接作为一种现代的先进制造工艺技术,正逐步应用到各种材料各种领域中。目前,我国作为世贸组织的重要一员,焊接技术的发展存在着巨大的机遇与挑战,所以,我国必须大力发展新型焊接技术,需要面向全球化,自动化,绿色化发展。
二、焊接技术的特征
对于我国而言,努力发展焊接技术是一项十分迫切而且艰巨的任务,而自动化焊接技术的不成熟使得我国必须切切实实的做好基础工作,因此,了解常用焊接技术是非常有必要的。我国常有焊接技术有:(1)熔化焊接由于加热方式及熔炼方式的区别,可以有以下几种主要类形:气焊,电弧焊,电渣焊,真空电子束焊接,激光焊。(2)压力焊由于加热方式的不同,可以有以下几种主要类形:①摩擦焊。利用摩擦热使工件表面加热,然后施加压力的焊接,其特点是摩擦时能够去除焊接面上的氧化物,而且热量集中,因此适用于导热性好及易氧化的有色金属的焊接。②电阻焊。这是利用电阻加热的方法,最常用的有点焊、缝焊及电阻对焊三种。前两者是将焊件加热熔化状态并同时加压;电阻对焊是先将焊件加热到表面熔化状态或高塑性状态,然后施加压力。电阻焊的特点是机械自动化程度高,因而生产效率高,适用于大批量生产。③超声波焊接是一种冷压焊,借助于超声波的机械振荡原理,与上述工艺不同之处在于用超声波替代了所施加的压力用来降低焊件所需用的压力,适用于点焊有色金属及其合金(铜铝等)的薄板。④冷压焊。其特点是不需加热,只依靠作用于焊件的强大的压力来进行焊接,适用于熔点较低的母材,例如铅、铝、铜等导线的焊接。⑤扩散焊。扩散焊是焊件紧密贴合,在真空或保护气氛(防氧化)中,加以一定温度和压力并保持一段时间,利用分子扩散理论使接触面之间的原子相互扩散而完成焊接的焊接方法。扩散焊主要用于焊接常规焊接工艺难以满足技术要求的小形、精密、复杂的焊件。压力焊接时,压力使接触面发生塑性变形,增加真实的接触面积。加剧的温度使焊件塑性变形部分晶体细化发生再结晶,高温同时加速了原子的扩散。冷压焊时,虽然没有加热,但压力接触面的不均匀使得接触面有热力集中,也达到了加热的效果。
三、我国焊接技术的发展方向
焊接技术的方法篇4
【关键词】中国,焊接,制造,技术
焊接是现代制造业中最为重要的材料成形和加工技术之一,焊接制造技术的发展对我国成为制造强国有着极为重要的意义。对近年我国焊接制造技术中几个主要领域的最新进展进行总结和分析,提出未来焊接制造领域的发展策略建议。由于钢材仍将是未来较长时间占主导地位的基础结构材料,应加强新一代钢材焊接冶金理论的研究及高品质焊接材料的发展;我国是世界最大的电子产品制造国,加强无铅连接材料及无铅封装技术的研究是发展无铅电子技术的唯一途径;以激光束、电子束为代表的高能束流焊接技术可大幅提高焊接生产效率,我国应加强其在装备制造业中的研究和应用;对焊接热过程的数值模拟,可为深入理解焊接过程中的复杂物理现象提供重要的理论依据和基础数据,近年来我国在焊接热过程、残余应力与变形以及焊接冶金等方面的数值模拟研究方面也取得了显著进步,应加强应用技术的研究;自动化焊接和智能化焊接是实现高效焊接制造的重要手段,应加强其集成应用技术的研究;我国应加强焊接结构完整性评价技术的研究和应用,这是确保焊接结构可靠服役的重要前提。
焊接是一门重要的基础工艺,它的发展依托于现代科学技术的发展。焊接技术诞生至今仅有百余年的历史,但是它的发展却是十分迅速的。20世以来,尤其是近二三十年随着科学技术的空前发展,各种新的焊接技术层出不穷,等离子物理、电子束、红外线、真空、超声、声学、微电子等现代科学技术的新成就都在焊接上获得广泛应用。新技术的应用奠定了焊接技术发展的基础,增强了焊接技术的能力,扩大了焊接技术应用的范围。目前,已经形成了几十种各具特色的焊接方法。焊接技术已经在能源、交通、化工、机械、特种设备、电子、航空航天、石油等诸多领域得到广泛的应用。可以说,现代科学技术的新成就日益渗透到焊接领域,促进了现代焊接技术的快速发展。
从早期的气焊、电弧焊发展至今天的近百种焊接方法,焊接技术依托于能源科学的进步而不断前进,当今焊接中已采用了力、热、电、磁、光、声等一切可以利用的能源手段。这些不同形式的能源以不同的方式作用于不同的材料上,通过一系列热力学、冶金学和力学相互作用过程制造出各种工程结构和零件。人们对这个过程进行不懈探究,衍生出独具特色的焊接冶金学、焊接物理和焊接力学等学科,并由此指导焊接材料、焊接制造工艺和焊接结构工程不断向前发展。
电弧熔化焊仍是目前焊接生产中的基础技术,保持高效、优质、低成本的焊接过程是人们一直所关注的方向。以激光束、电子束、等离子束为代表的高能束流焊接技术可大幅度提高生产效率,在进行厚板焊接时甚至可以不开坡口直接对接焊,因此近年来得到了较多的重视和发展,尤其是采用激光复合电弧的焊接技术受到了极大的关注。自动化焊接和智能化焊接是提高焊接生产效率和焊接质量的重要手段。目前在核电工程、重容重机、航空航天等行业中,自动化技术的应用主要是通过不同类型的成套焊接专机,而焊接机器人则在汽车整车及零部件、工程机械、铁路、船舶、航天、一般制造业等行业的焊接生产中有明显的增长。这二者都依赖于成熟的焊接自动化控制技术。综合利用机械、电弧、光等物理信息对焊接过程进行控制和检测,是实现自动化焊接的基础,同时又可以保证焊接过程向智能化发展。在智能化焊接过程时,机器可在敏锐捕捉焊接特征信号和信息的基础上,直接模拟焊工进行操作。
对焊接热过程的数值模拟与仿真,可以为深入理解焊接过程中的复杂物理现象进而实现焊接过程自动化提供重要而实用的理论依据和基础数据。随着现代计算机硬件和软件的高度发展,现在已经能够通过数值模拟和仿真的方法对焊接热过程、焊接冶金过程及焊接结构的应力变形等物理化学现象进行求解和分析,预测焊缝组织、性能及焊接结构的应力与变形,并指导焊接生产。近年来在焊接热过程、残余应力与变形以及焊接冶金等方面的数值模拟研究方面也取得了长足的进步。
我国焊接材料发展的主要瓶颈,是气保护实芯焊丝及埋弧焊实芯焊丝的品种和品质满足不了市场的需求,包括各种不同强度级别的高强钢焊丝、耐热钢焊丝、低温钢焊丝、耐大气腐蚀钢焊丝、不锈钢焊丝等。此外,我国还急需研制和生产自保护和堆焊用药芯焊丝。至于目前国内外厂家推出的无镀铜焊丝,应该称为特种涂层焊丝,由于各厂家涂层成分不同和表面处理方式的差异,焊丝的性能也有不同。性能优良的涂层和表面处理工艺,不但起防锈和的作用,焊接时不产生铜烟尘,而且可提升焊丝的电弧稳定性和减少焊接飞溅。目前,国内外厂家对这种焊丝涂层和表面处理工艺仍在不断改进中,期望这种焊丝与精确控制电弧过渡的数字化逆变焊机相配合,可以实现高效率、低飞溅的大电流CO2焊接,达到相当于药芯焊丝焊接的工艺效果,是今后的发展方向。
焊接技术的方法篇5
一、手工下向焊接技术的应用与发展
1.全纤维素型下向焊接技术
全纤维素型下向焊接对焊机的主要要求是:
(1)具有陡降外特性,静特性曲线A段适当提高。
(2)外拖推力电流起作用时其数值要足够大。
(3)适当提高静特性曲线外拖拐点,以达到小滴过度。
该工艺的关键在于根焊时要求单面焊双面成形;仰焊位置时防止熔滴在重力作用下出现背面凹陷及铁水粘连焊条。我国早期的下向焊均是纤维素型。
2.混合型下向焊接技术
混合型下向焊接是指在长输管道的现场组焊时,采用纤维素型焊条根焊、热焊,低氢型焊条填充焊、盖面焊的手工下向焊接技术。主要用于焊接钢管材质级别较高的管道。陕京管道是我国第一条采用下向焊工艺和进口钢管及焊材建成的长距离管道。
3.复合型下焊接技术
复合型下向焊是指根焊及热焊采用下向焊接方法,填充焊及盖面焊采用向上焊接方法的焊接工艺。其主要应用于焊接壁厚较大的管道。
与传统的向上焊相比,由于下向焊热输入低,熔深较浅,焊肉较薄,随着钢管壁厚的增加焊道层数也迅速增加,焊接时间和劳动强度随之加大,单纯的下向焊难以发挥其焊接速度快、效率高的特点。手工电弧焊不同壁厚钢管焊接层次及道数有所不同。而根焊、热焊采用向下焊,填充焊与盖面焊采用向上焊的复合下向焊技术则可发挥两种焊接方法的优势,达到优质高效的效果。在半自动气体保护下向焊接技术应用于管道建设之前,大壁厚管道多采用复合型下向焊接技术。
二、半自动下向焊接技术的应用与发展
1.药芯焊丝自保护半自动焊技术
药芯焊丝适用于各种位置的焊接,其连续性适于自动化过程生产。
该工艺的主要优点:
(1)质量好。焊接缺陷通常产生于焊接接头处。同等管径的钢管手工下向焊接接头数比半自动焊接接头数多,采用半自动焊降低了缺陷的产生机率。通常应用的NR204、NR207焊丝属低氢金属,而传统的手工焊多采用纤维素焊条。由此可知,半自动焊可降低焊缝中的氢含量。同时,半自动焊输人线能量高,可降低焊缝冷却速度,有助于氢的溢出及减少和防止出现冷裂纹。
(2)效率高。药芯焊丝把断续的焊接过程变为连续的生产方式。半自动焊溶敷量大,比手工焊道少,溶化速度比纤维素手工下向焊提高警惕15%~20%。焊渣薄,脱渣容易,减少了层间清渣时间。
(3)综合成本低。半自动焊接设备具有通用性,可用于半自动焊,也可用于手弧焊或其他焊接法的焊接。以焊接厚度为8.7mm钢管为例:手工焊至少需3组焊工完成,半自动焊只需2组焊工,至少可减少2名焊工,也相应减少了焊机数量和等辅助工装数量。同时,药芯焊丝有效利用率高,焊接坡口小,即节省填充金属使用量,又提高了焊接速度,综合成本只及手弧焊的一半。
2.CO2活性气体保护半自动下向焊接技术
CO2气体保护焊是一种廉价,高效的焊接方法。传统的短路过度CO2焊接不能从根本上解决焊接飞溅大,控制熔深与成型的矛盾。采用波形控制技术的STT型CO2半自动焊机,保证了焊接过程稳定,焊缝成形美观,干伸长度变化影响小,显著降低了飞溅,减轻了焊工劳动强度。
STT型CO2半自动焊时,焊机处于短路过渡方式,电源在一个过渡周期内,根据不同电弧电压值,输出不同的焊接电流。STT型CO2半自动焊以其优异的性能拓宽了CO2半自动焊在长输管道施工中的应用领域。
STT型CO2半自动焊与药芯焊丝自保护半自动焊是目前国内常用的半自动下向焊接方法,展示了在管道焊接领域良好的应用前景。
三、全自动气体保护下向焊接技术
管道全自动气保护下向焊接技术使用可熔化的焊丝与主要焊金属之间的电弧为热焊来溶化焊丝和钢管,在焊接时向焊接区域输送保护气体以隔离空气的有害作用,通过连续送丝完成焊接。由于熔化极气保护焊时焊接区的保护简单,焊接区域易于观察,生产效率高,焊接工艺相对简单,便于控制,容易实现全位置焊接。
该工艺可实现全位置多机头同时工作,打底焊可从管内部焊接,也可从管外部焊接。打底焊可采用向上焊以防止熔透不够成烧穿,易于单面焊双面成型。焊接参数的调节一般在控制台或控制面板上,主要调节参数有:电压、送丝速度、每个焊头移动速度、摆动频率、摆动宽度及摆延迟时间。应当注意的是,因每条焊道焊接参数不同,整个焊缝的焊接参数应根据管材规格及现场条件,通过焊接试验合格后方可应用于生产。
管道全自动气保护焊技术以其焊接质量高,焊接速度快等优点,在国外已经普及,而国内则处于推广阶段,我国自行研制的全自动气体保护焊设备已在郑州一义马煤气管道工程中得到应用。全自动气体保护下向焊接技术是我国长输管道下向焊接技术发展的方向。
四、下向焊接技术对工装、设备及环境的要求
下向焊接技术的发展与进步依赖于焊机、对口器、送丝机构、行走机构等装备的技术成熟程度和焊材工艺性能的稳定性。长输管道工程各种下向焊接技术的应用主要有以下两个因素:
(1)工程环境条件:
在一些环境恶劣的地区,限制了先进的焊接技术的应用。比如一些水网地带,因空气湿度大,对焊材的烘干、保管、使用要求严格,现场焊接多采用纤维素焊条手弧焊,原因是纤维素焊条比低氢型焊条在同等条件下气孔产生的倾向小。另一方面,水网地带施工现场,自动、半自动焊接设备运用困难较大而手工焊由于焊钳小,操作灵活简便,在满足焊缝力学性能的前提下,可根据现场条件选择可行的焊接方法。
(2)工装设备的技术状况:
先进的自动、半自动焊接设备会大幅度提高焊接效率,尽管更新装备需投人大量资金,在长输管道建设高峰期时代,其市场回报率是可观的。只有拥有技术,方可拥有市场。
焊接技术的方法篇6
1、新旧钢筋连接方法的技术经济分析对比
现浇钢筋混凝土中钢筋的连接方法主要有:绑扎搭接法、手工电弧焊的塔接焊法、绑条焊法,以及60年代中出现的电渣焊和近年来开发研制的气压焊等。
这些连接方法各有特点,但就其适应范围和技术经济指标相比较,钢筋窄间隙焊技术,在技术经济等各项指标上均优于原有的各种钢筋连接方法。以水平钢筋连接方法为例:绑扎搭接法虽然施工简便,不需要能源和机械设备,也不受气候环境的影响,但浪费大量的钢筋材料,受力性能也不好;手工电弧焊的搭接焊法和绑条焊法,虽在技术性能、生产成本上优于绑扎搭接,但其施工麻烦,技术要求也高,工人需掌握平、立、横、仰等各种角度的焊接技术,耗电量大,工效低,同时也要浪费一定的钢筋;电渣焊到目前为止只能作竖向钢筋的焊接,且对焊接电源电压有严格的要求,否则影响焊接质量或无法起弧焊接。气压焊虽然节约钢材,降低成本,其施焊工艺要求非常严,在水电施工条件差的情况下,使这种技术难为工人接受而限制了其使用范围,而且这两种方法都需要较昂贵的专用设备和卡具;套筒连接法,一是施工成本高,二是目前国内市场上难以找到现货供应,给施工准备工作带来不便。
钢筋窄间隙焊接技术,所具以下优点正好能克服上述种种不足之处。
(1)钢筋窄间隙焊接技术的接头为中心受力的对接接头,不仅改善了钢筋的受力条件,也保证了钢筋的设计位置,给混凝土浇灌提供了方便条件。
使用窄间隙焊接的钢筋接头,质量可靠,经过短期培训的焊工,按照规程操作,接头的力学性能指标能满足设计和水工规范要求,其合格率都能达到100%。
(2)使用窄间隙焊技术,无需增加设备,平常使用的普通交、直流焊机均可,配上一定数量模具(每个模具费用300元)即可施焊。以焊接直径28mm以上的水平钢筋为例,窄间隙焊接头的费用是绑条焊接头费用的1/11,是搭接焊接头费用的1/5,工效可提高约5倍。
(3)钢筋窄间隙焊接技术,适用范围广泛,对直径18mm~40mm的ⅠⅡⅢ级钢筋均可进行水平、竖直、斜向的焊接。由于钢筋窄间隙焊的基本技术动作和焊接运条方式都是手工电弧焊技术的基本动作和运条方式,因此焊工培训工作就容易得多,对已持有手工电弧焊上岗作业证的初、中级焊工来说,实际上只是一种对新方法的适应过程,一般经过7~15d的专门培训,即可进行水平、竖直、斜向的钢筋接头焊接。
2、钢筋窄间隙焊技术在大峡电站工程中的应用
2.1工程概况
大峡水电站位于甘肃省白银市和榆中县交界的黄河干流上,电站总装机容量为30万kw,是国家八五”期间在甘肃的重要建设项目。电站设计为低水头河床式电站,枢纽建筑物为钢筋混凝土结构,混凝土总量60余万方,设计钢筋量约15000t,各种形式的钢筋接头约60万个。
2.2技术培训