逻辑推理讲义范例(3篇)
逻辑推理讲义范文
关键词:数理逻辑;离散数学;教学方法
中图分类号:G642文献标识码:B
1引言
离散数学是现代数学的一个重要分支,是计算机科学中基础理论的核心课程。学习离散数学,可培养和提高学生的抽象思维能力和逻辑推理能力,为学生继续学习和工作、参加科学研究打下坚实的数学基础。离散数学中的数理逻辑是用数学方法来研究推理的形式结构和推理规律的数学学科,它与数学的其他分支、计算机学科、人工智能、语言学等学科均有十分密切的联系,并且日益显示出它的重要作用和更加广泛的应用前景。要想很好地使用计算机,就必须学习数理逻辑。
数理逻辑通常是离散数学学习的开始部分,但由于这一部分内容概念抽象、公式定理较多,推理方法灵活等原因,学生学习入门困难,对问题不易入手解决。而对数理逻辑的把握将直接影响到学生对离散数学整个课程的学习,影响到学生计算机思维逻辑的正确形成。如何提高数理逻辑部分内容的教学水平和质量,对学生学习后面的内容具有现实的意义。本文结合作者近年来教学的实际情况,从教学方法以及实践方面进行探讨。
2教学方法探讨
2.1激发兴趣
(1)引入逻辑小故事激发学习兴趣
在进入新课讲解之前先引入逻辑小故事,激发学生的学习兴趣。比如流传很广的“二难推理”。“古希腊一个国王喜欢杀人,而且他们给每个被杀的人说要是在杀他之前他说真话的话就给他绞刑,要是假话就砍头。终于一天碰到个聪明人说了一句话,不仅没被杀头还让国王和大臣下不了台,你说那个聪明人说的什么。”可让学生首先进入故事角色去思考答案,这样不但能够激发学生的学习兴趣,同时意识到学习逻辑的重要性。
(2)引用科学家的话激发学习动力
数理逻辑部分内容概念抽象,学生学习困难,常常会产生知难而退的情绪,并且开始意识不到它的重要性。基于此,可以引用著名的计算机软件大师狄克斯特(Dijkstra)曾经说过的“我现在年纪大了,搞了这么多年软件,错误不知犯了多少,现在觉悟了.我想假如我早年在数理逻辑上好好下点功夫的话,我就不会犯这么多的错误。不少东西逻辑学家早就说了,可我不知道。要是我能年轻20岁,我要回去学逻辑。”引用计算机科学家的话来强调数理逻辑的重要性,可以使学习者更加深刻地领悟到这一点,明确学习的目的,激发学习的动力。
也可以引入国家公务员考试题中的部分逻辑题,学生在未学逻辑之前对题目的解答肯定有存在疑问的地方,而这些题目在学完逻辑之后可以得到很好的解决,带着这样问题学习,可以激发学生的学习动力。
2.2明确目的
离散数学是计算机科学与技术专业的核心基础课程,离散数学课程所涉及的概念、方法和理论,大量地应用在数字电路、编译原理、数据结构、操作系统、数据库系统、算法设计与分析、软件工程、人工智能、多媒体技术、计算机网络等专业课程以及信息管理、信号处理、模式识别、数据加密等相关课程中,一些重要实用项目(例如信息技术、战争、经济等等)的理论模型正是离散数学模型,通过离散数学的理论推导、算法设计与分析、编程与软件制作,最后上机付诸实现。它能锻炼学生的概括抽象能力、逻辑思维能力、归纳构造能力,这些能力是一切软硬件计算机科学工作者不可缺少的。离散数学课程所传授的思想和方法广泛地体现在计算机科学技术及相关专业的诸领域,计算机科学中普遍地采用离散数学中的一些基本概念、基本思想、基本方法,使得计算机科学越趋完善与成熟。
2.3突出重点
数理逻辑是离散数学的难点之一。其主要原因是内容比较抽象且方法较独特,加之题型以知识较广的证明题居多。而命题逻辑又是数理逻辑的基础,熟练而灵活地掌握好命题逻辑中推理证明的方法既是学习命题逻辑的重点,又会为进一步学习谓词逻辑打下良好的基础。命题演算在命题逻辑中占有重要的地位,常见的推理方法有真值表法、等值演算法和主范式法,这三者也是解决谓词逻辑推理的基础,所以在讲解时需下大工夫,作为重点来讲解。
2.4强调方法
离散数学与高等数学等其他的连续数学课程有着完全不同的思维方式,整个知识点的描述建立在逻辑的基础之上。可以说离散数学中逻辑的概念贯穿于整个教学中,因此给学生灌输逻辑的思维方式以及描述问题和证明问题的独特方式是十分重要的。在教学中,我们提出了按定义证明方式,从证明问题本身的定义出发,将其分成两部分,定义的前半部分将作为附加已知条件和题目中本身的已知条件一起加以应用,证明问题定义的后半部分。通过这种方法的总结,学生对大多数证明问题感到轻松自如,使学生的逻辑推理能力提升到更高的层次。离散数学不适合搞“题海战术”,它强调的是逻辑性和抽象性,注重概念、方法和应用,所以千万不要在未完全理解某些概念、基本定理之前就匆忙去做习题。
2.5联系生活
在命题逻辑部分,学生最难掌握的是关于条件式的学习,条件式的前件与后件的关系不好把握。根据课本的定义:设给定两个命题P和Q,其条件命题是一个复合命题,记作PQ,读作“如果P,那么Q”或“P蕴含Q”。真值表如下:
学生对条件式真值表中的第二种情况“善意推断”很费解,这时可以举现实中的例子,如“天下雨,马路就会湿”,分别列举真值表对应的四种情况,这样可以提高学生的学习兴趣,帮助学生理解概念。
在对命题符号化时,前件和后件的位置一直是学生难以把握的难点,有些命题的充分和必要条件表达的并不是很明显。
2.6善于总结
数理逻辑部分看似知识点分散,实则联系紧密,如真值表可以判断公式类型、判断公式等值、求主范式、逻辑推理;主范式可以求真值表、判断公式类型、判断公式等值、逻辑推理等。这时可以画图(如下图)来总结,并且每一关系对应着一道相应的例题,使学生可以从整体把握整个数理逻辑需掌握的内容。
3结束语
通过明确数理逻辑学习的重要性以及具体应用,可以使学生明确学习目标,增加学习兴趣,激发学习动力,为学好离散数学树立信息。“好的开端是成功的一半”,通过合理安排教学内容可以做到重点突出、主线贯穿、知识体系完整。通过多种教学方法与教学手段的使用可以加强教学质量。
参考文献
[1]匡桂娟.离散数学中数理逻辑教学的探讨[J].桂林航天工业高等专科学校学报,2007,(4).
逻辑推理讲义范文篇2
【关键词】逻辑/广义与狭义/一元论/多元论/工具主义
【正文】
一、广义的逻辑与狭义的逻辑
什么是逻辑?要清楚明确地回答这一问题,要将各种各样冠以“逻辑”的学科都统一在一个明确清晰的“逻辑”的定义之下,这是很困难的,甚至是不可能的。
不妨先对逻辑发展史作一简单考察。
在西方,公元前4世纪,古希腊哲学家亚里士多德集其前人研究之大成,写成了逻辑巨著《工具论》(由亚氏的六部著作编排而成:《范畴篇》、《解释篇》、《前分析篇》、《后分析篇》、《论辩篇》、《辨谬篇》)。虽然在亚氏的著作中他并没有明确地使用“逻辑”这一名称,也没有明确地以“逻辑”这一术语命名其学说,但是,历史事实是,亚氏使形式逻辑从哲学、认识论中分化出来,形成了一门以推理为中心,特别是以三段论为中心的独立的科学。因此,可以说,亚里士多德是形式逻辑的创始人。
亚氏之后,亚里士多德学派即逍遥学派和斯多葛学派都以不同形式发展了亚氏的形式逻辑理论——逍遥学派的德奥弗拉斯特和欧德慕给亚里士多德逻辑的推理形式增补了一些新的形式与内容,提出了命题逻辑问题,斯多葛学派克里西普斯等人则构造了一个与亚里士多德词项逻辑不同的命题逻辑理论。
弗兰西斯·培根是英国近代唯物主义哲学家,也是近代归纳逻辑的创始人,他在总结前人归纳法的基础上,在批判了经院逻辑和亚里士多德逻辑之后,以其古典归纳逻辑名著《新工具》为标志,奠定了归纳逻辑的基础。
18-19世纪,德国古典哲学家康德、黑格尔等,对人类思维的辩证运动与发展进行了深入研究,建立了另一种新的思辩逻辑——辩证逻辑。
与此同时,以亚里士多德逻辑为基础的形式逻辑在发展与变化中也进入了新的阶段——数理逻辑阶段。数理逻辑也称符号逻辑,或谓狭义的现代逻辑,奠基人是德国哲学家、数学家莱布尼兹。他主张建立“表意的、普遍的语言”来研究思维问题,使推理的有效性可以用数学方法来进行。莱布尼兹的这些设想虽然在许多方面并未实现,但他提出的“把逻辑加以数学化”的伟大构想,对逻辑学发展的贡献却是意义深远的,正如逻辑史家肖尔兹所说,“人们提起莱布尼兹的名字就好象在谈到日出一样。他使亚里士多德逻辑开始了‘新生’,这种新生的逻辑在今天的最完美的表现就是采作逻辑斯蒂形式的现代精确逻辑。”(注:肖尔兹著,张家龙译:《简明逻辑史》,商务印书馆1997年版,第50页。)莱氏之后,经过英国数学家、哲学家、逻辑学家哈米尔顿、德摩根的研究,英国数学家布尔于1847年建立了逻辑代数,这是第一个成功的数理逻辑系统。1879年,德国数学家、逻辑学家弗雷格在《概念文字——一种模仿算术语言构造的纯思维的形式语言》这部88页的著作中发表了历史上第一个初步自足的、包括命题演算在内的谓词演算公理系统,从而创建了现代数理逻辑。之后,英国哲学家、逻辑学家罗素和怀特海于1910年发表了三大卷的《数学原理》,建立了带等词的一阶谓词系统,从而使得数理逻辑成熟与发展起来。
上述数理逻辑,以两个演算——命题演算与谓词演算作为核心,被称之为现代形式逻辑或狭义的现代逻辑。在当代,以现代逻辑为基础,将现代逻辑应用于各个领域、各个学科,从而出现了广义的各种各样的现代逻辑分支。
从以上对古代、近代、现当代逻辑学说发展的简单考察可以看出,逻辑的范围是十分广泛的。它至少包括了以亚里士多德逻辑为基础的传统演绎逻辑、以数理逻辑为核心及基础的现代逻辑及其分支、归纳逻辑、辩证逻辑等等,而这些逻辑相互之间的特性又是十分不同甚至十分对立的。所以,要用一个明确的定义把这些历史上所谓的逻辑都包含进去,确实是很难的。事实上,“逻辑”一词是可以有不同的涵义的,逻辑可以有广义与狭义之分。
英国逻辑学家哈克在谈到逻辑的范围时,认为逻辑是一个十分庞大的学科群,其分支主要包括如下:
1.传统逻辑:亚里士多德的三段论
2.经典逻辑:二值的命题演算与谓词演算
3.扩展的逻辑:模态逻辑、时态逻辑、道义逻辑、认识论逻辑、优选逻辑、命令句逻辑、问题逻辑
4.异常的逻辑:多值逻辑、直觉主义逻辑、量子逻辑、自由逻辑
5.归纳逻辑(注:s.haack:philosophyoflogics,cambridgeuniversitypress,1978,p.4,221-231.)
在这里,哈克所谓的“扩展的逻辑”,是指在经典的命题演算与谓词演算中增加一些相应的公理、规则及其新的逻辑算子,使其形式系统扩展到一些原为非形式的推演,由此而形成的不同于经典逻辑的现代逻辑分支;至于“异常的逻辑”,则是指其形成过程一方面使用与经典逻辑相同的词汇,但另一方面,这些系统又对经典逻辑的公理与规则进行了限制甚至根本性的修改,从而使之脱离了经典逻辑的轨道的那些现代逻辑分支。“扩展的逻辑”与“异常的逻辑”统称为“非经典逻辑”。
以哈克的上述分类为基础,从逻辑学发展的历史与现实来看,逻辑是有不同的涵义的,因此,逻辑的范围是有宽有窄的:首先,逻辑指经典逻辑,即二值的命题演算与谓词演算,不严格地,也可以叫数理逻辑,这是最“标准”、最“正统”的逻辑,也是最狭义的逻辑;其次,逻辑还包括现代非经典逻辑,不严格地,也可以叫哲学逻辑,即哈克所讲的扩展的逻辑与异常的逻辑;再次,逻辑还包括传统演绎逻辑,它是以亚里士多德逻辑为基础的关于非模态的直言命题及其演绎推理的直观理论,其主要内容一般包括词项(概念)、命题、推理、证明特别是三段论等。此外,逻辑还可以包括归纳逻辑(包括现代归纳逻辑与传统归纳法)、辩证逻辑。将逻辑局限于经典逻辑、非经典逻辑,这就是狭义的逻辑,而将逻辑包括传统逻辑、归纳逻辑与辩证逻辑,则是广义的逻辑。以这一取向为标准,狭义的逻辑基本上可以对应于“逻辑是研究推理有效性的科学,即如何将有效的推理形式从无效的推理形式中区分开来的科学”这一定义,而广义的逻辑则可以基本上对应于“逻辑是研究思维形式、逻辑基本规律及简单的逻辑方法的科学”这一定义。
由此可见,逻辑学的发展是多层面的,站在不同的角度,就可以从不同的方面来考察逻辑学的不同层面及不同涵义:
(1)从现代逻辑的视野看,逻辑学的发展从古到今的过程是从传统逻辑到经典逻辑再到非经典逻辑的过程。这一点上面已有论述,此不多说。
(2)从逻辑学兼具理论科学与应用科学的角度,可以确切地把逻辑分成纯逻辑与应用逻辑两大层面。可以说,纯逻辑制定出一系列完全抽象的机械性装置(例如公理与推导规则),它们只展示推理论证的结构而不与某一具体领域或学科挂钩,是“通论”性的,而应用逻辑则是将纯逻辑理论应用于某一领域或某一主题,从而将这一具体主题与纯逻辑理论相结合而形成的特定的逻辑系统,它相当于逻辑的某一“分论”。在纯逻辑这一层面,还可以分成理论逻辑与元逻辑,所谓元逻辑,是以逻辑本身为研究对象的元理论,是刻划、研究逻辑系统形式面貌与形式性质的逻辑学科,它研究诸如逻辑系统的一致性、可满足性、完全性等等。不言而喻,元逻辑之外的纯逻辑部分,统称为理论逻辑。以这种分法为基础,如果说纯逻辑是狭义的逻辑的话,则应用逻辑就是广义的逻辑。
(3)从逻辑学对表达式意义的不同研究层次,可以把逻辑分成外延逻辑、内涵逻辑与语言逻辑。传统逻辑与经典逻辑对语言表达式(词或句子)意义的研究基本上停留在表达式的外延上,认为表达式的外延就是其意义(如认为词的意义就是其所指,句子的意义就是其真值),因此,它们是外延逻辑。对表达式意义的研究不只是停留在其外延上,认为不仅要研究表达式的外延,也要研究表达式的内涵,这样的逻辑就是内涵逻辑。可以看出,外延逻辑与内涵逻辑对表达式意义的研究都只是停留在语形或语义层面,而实际上,表达式总是在具体的语言环境下使用的,因此,逻辑对语言表达式意义的研究还可以也应该深入到语言表达式的具体的使用中去,对其进行语用研究,这一考虑,就促成了所谓的自然语言逻辑或语言逻辑的研究。所谓自然语言逻辑,按我的理解,就是通过对自然语言的语形、语义与语用分析来研究自然语言中的推理的科学。因此,如果说狭义的逻辑是一种语形或语义逻辑、它们只研究语形或语义推理的话,则广义的逻辑则是一种语用逻辑,它还要研究语用推理。
二、现代逻辑背景下的逻辑一元论、多元论与工具论
从上面的论述可以看出,在当代,现代逻辑的发展呈现出多层次、全方位发展的态势,逻辑学正在从单一学科逐步形成为由既相对独立又有内在联系的诸多学科组成的科学体系的逻辑科学。现代逻辑发展的这一趋势,就使得一方面大量的、各种各样的现代逻辑分支、各种各样的逻辑系统不断涌现,比如,既有作为经典逻辑的命题演算与谓词演算,也有作为对经典逻辑的扩展或背离的非经典逻辑。另一方面,不同于传统逻辑或经典逻辑所具有的直观性,非经典逻辑系统越来越远离直观甚至在某些意义上与直观相背。在这种背景下,逻辑学家就必然面临如下需要回答的问题:
(1)逻辑系统有无正确与不正确之分?说一个逻辑系统是正确的或不正确的是什么意思?
(2)是否一定要期望一个逻辑系统成为总体应用的即可以应用于代表任何主题的推理的?或者说,逻辑可以是局部地正确,即在一个特定的讨论区域内正确的吗?
(3)经典逻辑与非经典逻辑特别是其中的异常逻辑之间的关系如何?它们是否是相互对立的?
对上述问题的不同回答,就区分出了关于逻辑的一元论、多元论与工具主义。
不管是一元论还是多元论,都认为逻辑系统有正确与不正确之分,逻辑系统的正确与否依赖于“相对于系统本身的有效性或逻辑真理”与“系统外的有效性或逻辑真理”是否一致。如果某一逻辑系统中的有效的形式论证与那些在系统外的意义上有效的非形式论证相一致,并且那些在某一系统中逻辑地真的合式公式与那些在系统外的意义上也逻辑地真的陈述相一致,则该逻辑系统就是正确的,反之则为不正确的。以这一认识为基础,一元论认为只有一个唯一地在此意义下正确的逻辑系统,而多元论则认为存在多个如此的逻辑系统。
工具主义则认为,谈论一个逻辑系统是否正确或不正确是没有意义的,不存在所谓正确或不正确的逻辑系统,“正确的”这个词是不合适的。就工具主义来说,他们只允许这样一个“内部”问题:一个逻辑系统是否是“完善的”(sound)?即是说,逻辑系统的定理或语法地有效的论证是否全部地并且唯一地是在该系统内逻辑地真或有效的?(注:s.haack:philosophyoflogics,cambridgeuniversitypress,1978,p.4,221-231.)
多元论又可以分为总体多元论与局部多元论。局部多元论认为,不同的逻辑系统是由于应用于讨论的不同领域而形成的,因此,局部多元论把系统外的有效性和逻辑真理从而也把逻辑系统的正确性看作是讨论的一个特定领域,认为一个论证并不是无条件地有效的,而是在讨论中有效的,所以,逻辑可以是局部地正确的,即在某一特定的讨论区域内正确的。而总体多元论则持有与一元论相同的假定:逻辑原理可以应用于任何主题,因此,一个逻辑系统应该是总体应用的即可以应用于代表任何主题的推理的。
就经典逻辑与非经典逻辑特别是异常逻辑之间的关系而言,一元论者强迫人们在经典系统与异常系统中二者择一,而多元论者则认为经典逻辑与扩展的逻辑都是正确的。因此,一元论者断言经典逻辑与异常逻辑在是否正确地代表了系统外的有效论证或逻辑真理的形式上是相互对立的,而多元论者则认为经典逻辑与异常逻辑两者在某一或其他途径下的对立只是表面的。
就逻辑科学发展的现实而言,从传统逻辑到经典逻辑再到非经典逻辑的道路,也是逻辑科学特别是逻辑系统发展由比较单一走向丰富多样的过程。以传统逻辑来说,它来自于人们的日常思维和推理的实际,可以说是对人们的日常思维特别是推理活动的概括和总结,因此,传统逻辑的内容是比较直观的,与现实也是比较吻合的。而经典逻辑是传统逻辑的现展阶段,是以形式化的方法对传统逻辑理论特别是推理理论的新的研究,因此,与传统逻辑一样,经典逻辑的内容仍是具有直观基础的——经典逻辑的公理与定理大都可以在日常思维中找到相对应的思维与推理的实例予以佐证,人们对它们的理解与解释也不会感到与日常思维特别是推理的实际过于异常。所以,在传统逻辑与经典逻辑的层面,用“系统内的有效性”与“系统外的有效性”的一致来说明一个逻辑系统的正确性是合适的,这种说明的实质就是要求逻辑系统这种“主观”的产物与思维的客观实际相一致。
相对而言,在经典逻辑基础上发展起来的各种非经典逻辑,它的直观性、与人们日常思维特别是推理的吻合性就大大不如经典逻辑,甚至与经典逻辑背道而驰。以模态命题系统为例(应该说,相对而言,模态命题逻辑在非经典逻辑中是较为直观的),如果说系统t满足对模态逻辑系统的直观要求,它所断定的是没有争论的一些结论的话,则系统s4、s5就难以说具有直观性以及与人们日常思维特别是推理的吻合性了:在系统s4和s5中都出现了模态算子的重叠,因而象pp、pp这样的公式大量出现,而这些公式几乎没有什么直观性。至于非经典逻辑中的直觉主义逻辑、多值逻辑,它们离人们的日常思维特别是推理的实际更远,更显得“反常”。同时,同一个领域比如模态逻辑或时态逻辑,由于方法和着眼点不同,可以构造出各种不同的系统。在这种情况下,一些学者作出逻辑系统无正确性可言、逻辑系统纯粹只是人们思考的工具的工具主义结论也就不足为怪了。应该说,工具主义的观点是有一定的可取之处的:它看到了逻辑系统特别是各种非经典逻辑系统远离日常思维与推理和作为“纯思维产物”的高度抽象性,看到了逻辑学家在建构各种逻辑系统时的高度的创造性或“主观能动性”。但是,另一方面,从本质来看,工具主义的这种观点是不正确的,也是不可取的。它完全抹杀了逻辑系统建构的客观基础,否定了逻辑系统最终是人们特别是逻辑学家的主观对思维实际、推理实际的反映。这种观点最终的结果就是导致逻辑无用论,最终取消逻辑。这显然是不符合逻辑科学发展的实际和逻辑科学的学科性质的。
而一元论对逻辑系统的“正确性”的理解过于狭窄,也过于严厉,这种观点难以解释在今天各种不同的逻辑系统之间相互并存、互为补充的现实。从本质上讲,尽管任何逻辑系统都是逻辑学家构造出来的,但是,它们是有客观基础的——它总是在一定程度上反映了人类思维特别是推理实际的某一方面或某一领域(否则,它就是没有实际意义的,最终难以存在下去),所以,逻辑系统是有“正确”与“不正确”之分的——正确地反映了人类思维特别是推理实际的逻辑系统就是正确的,反之则是不正确的。应该说,这一点是一元论与多元论都可以同意的,但是,在承认这一说法的同时,还应该看到,“正确地反映人类思维特别是推理的实际”是可以有不同的程度、不同的层次的:逻辑系统对人类思维特别是推理实际的反映可以是比较普遍、一般的(比如传统逻辑与经典逻辑),也可以是比较特殊、具体的(比如某些非经典逻辑系统,它所反映的就是相对于某一特定主题或领域的特定的思维与推理);逻辑系统对人类思维特别是推理实际的反映可以是比较直观、与日常较为吻合的,也可以是相对来说较为抽象、远离现实的。从这个意义上来讲,逻辑系统的“正确性”是多样的,不可绝对化和唯一化。所以,我认为,一元论坚持“只有一个正确的、唯一的逻辑”是不妥的,相反,多元论的观点则是可以接受的。
如果按哈克的分析把非经典逻辑分成“扩展的逻辑”与“异常的逻辑”的话,那么,很显然,扩展的逻辑是以经典逻辑为基础,将经典逻辑理论应用于某一领域或学科而形成的对经典逻辑的扩充,它们之间并不存在互斥、对立的情况,它们都可以是“正确的”。至于“异常的逻辑”,它的某些性质与特征确实可能与经典逻辑不同甚至相矛盾(例如在直觉主义逻辑、多值逻辑中排中律的失效等等),因此,它们有“对立”的地方,但就经典逻辑与某一异常逻辑分支相比而言,它们的对立或不一致只是在某些方面,而从整个系统的性质来看,它们的互通之处更多,因此,经典逻辑与某一异常逻辑分支之间的所谓“对立”之处,恰恰是该异常逻辑分支的独特之处,也是它对某一问题的不同于经典逻辑的处理和解决之处,所以,从这个意义上讲,它对经典逻辑的意义不在于“否定”了经典逻辑的某些定理或规则,而在于对经典逻辑忽略了的或无法处理的地方进行了自己的独特的处理。所以,经典逻辑与异常逻辑之间的“对立”是表面上的,其实质是它们之间的互补。
逻辑推理讲义范文
【关键词】同义反复/事实真理和逻辑真理/命题的逻辑内容
【正文】
逻辑真理是重言式,重言式是永真的,其永真性必然地导源于它的同义反复性。[1]维特根斯坦最先明确表述的这个关于逻辑真理的观点已经成为现代逻辑学中的正统。逻辑真理为什么是同义反复的?正统的观点似乎认为,没有更好的理由来解释重言真理的永真性,因此逻辑真理的必然性只能导源于其同义反复性。[2]在下文中我将举出一些在我看来较充分的理由来论证事实并非如此。实际上大部分重言式都不是同义反复的;如果全部重言真理都必然地具有同义反复性,则经典演绎逻辑系统的大部分定理将不能从该系统中推出来,因为在那种条件下经典演绎系统的推演能力将是非常弱的。
一、论逻辑真理的本性
所谓“同义反复”从直觉上讲有两层意思:其一是指一推理的后件的内容包含于其前件的内容之中,其二指推理的前后件的内容完全相同,无论该前后件的形式是否相同。关于经验命题的事实内容大小的测度是著名地困难的;就我所知,关于逻辑命题的逻辑内容大小测度的问题,前辈逻辑哲学家似并没有专门研究过。然而,若要弄清重言真理到底是否必然地为同义反复的,我们就必须找到一种方法,由此可直接衡量有关逻辑命题的逻辑内容之大小,进而判定有效推理在逻辑内容上是否是可扩大的。
经典逻辑推理以实质蕴涵为基础,数学命题推导的有效性又由逻辑推理的规则所保证。因此可以说实质蕴涵是一切经典形式科学的基础。但现在的问题是,逻辑学家将实质蕴涵命题pq定义为p∨q,也就是说,在p和q的4种可能的真值组合中,只有事态p∧q使pq为假,其它三种事态p∧q、p∧q、p∧q都使其为真;这就与日常生活和科学实践中人们关于事实真理的推理之看法有了很大的差异。逻辑学家为什么要这么定义实质蕴涵?就我所知,前辈逻辑哲学家似乎没有就此提出过合理的说明,而只是进行一些实用的解释。比如罗素曾说过:为了使从p得出q这一推论是正确无误的,只须p为真和命题“非p或q”真;这种蕴涵关系对数学推理来说是足够的。[3]塔尔斯基也表达了与此相同的观点,并指出,将实质蕴涵作为数学推理的基础不仅非常方便,而且还取得了十分令人满意的效果。[4]然而对实质蕴涵的这种实用解释并不能满足我们的理论兴趣,更何况实用根本上乃是偶然的,无法说明重言真理的必然性。我们需要的是对实质蕴涵之所以如此定义的一个逻辑哲学上合理的解释。
在日常生活和经验科学研究中,关于因果性的命题可以表述为条件句的形式。就经验知识而言,因果条件句的真值条件如何?倘若一因果条件句的前后件都是真的,则它就被认为是真的;当一条件句的前件真而后件假时,它便被认为是假的;而当一条件句的前件假时,则无论其后件的真值如何,该因果条件句都被认为并未断言任何内容,它是无真值的。就事实真理观来说,因果条件句具有上述的真值条件似应无可置疑。因为人们不仅在日常生活中对因果条件句的真值持这种看法,而且在对科学命题的证实或确证中也是这么行事的。在科学实践中作为证实或确证原则而普遍适用的尼柯标准规定[5]:任一全称条件句形式的假说比如“所有的乌鸦是黑的”,都可符号化为(x)(f[,x]g[,x])(1),对命题(1)来说,一个具有f[,a]∧g[,a]形式的个体确证它,一个f[,a]∧g[,a]个体否证它,而f[,a]∧g[,a]和f[,a]∧g[,a]与对(1)的确证不相干。这表明就事实真理观来说,(x)(f[,x]g[,x])(1)肯定的是所有的f[,a]∧g[,a],它排斥的是任一个f[,a]∧g[,a],而对f[,a]∧g[,a]和f[,a]∧g[,a]没作任何断言。另一方面,根据逻辑学的定义,(1)断言的是f[,x]g[,x]的所有替换事例都是真的,即f[,a]g[,a]、f[,b]g[,b]…等等都是真的。[6]由此看来,(1)获得确证和否证的逻辑机制便十分明显了。为什么我们观察到f[,a]∧g[,a]时就对(1)进行了一次确证?因为f[,a]∧g[,a]使(1)的一个替换事例f[,a]g[,a]为真,而(1)断言的是所有它的替换事例都是真的,故而这就达到了对(1)的一次确证。同理,如果我们观察到f[,a]∧g[,a]就使得(1)的一个替换事例f[,a]g[,a]为假,从而使得(1)关于其任何替换事例都为真的断言不成立。与此相应,当我们观察到f[,a]∧g[,a]或f[,a]∧g[,a]时,与对(1)的任何一个替换事例的证实和否证都不相干,故相应地亦与(1)所断言或排斥的内容不相干。
以上讨论使我们清楚了,就经验知识所涉及的范围而言,事态p∧q使因果条件句pq为真,事态p∧q使其为假,而p∧q和p∧q与对它的证实不相干。容易引起争议的是,具有什么样真值条件的条件句才可算作因果条件句,这个问题由于一时难以澄清,况且与本题并无直接关系,让我们暂且搁置不论。在这里我们只需作一个推断:上述真值条件是作为因果条件句的必要条件,但是否是作为因果条件句的充分条件暂且不论。
由此可知,就经验和形式知识而言,对条件句pq可从事实真理观和逻辑真理观两个方面来理解。作为经验知识的因果句和作为形式知识的蕴涵句在使其为假的事态上是完全一样的,即仅p∧q使它们为假;但在使作为知识的条件句pq为真的事态的看法上,事实真理观和逻辑真理观却有了差异。究其原因,乃因为,一般而言事实真理的本质在于命题对相关事态的“符合”,这里只取这种“符合”的直觉含义。事实真理观将其前后件都为真看作是因果句之唯一的为真的真值条件,正满足了这种“符合”直觉。而倘若我们对逻辑学关于逻辑常词的有关定义作一番细致深入的反思,就不难发现,逻辑真理实质上无非是逻辑命题必然地排除使得自身为假的事态的方式而已。逻辑真理既必然地不可能为假,又必然地不可能只在“符合”的意义上为真;由此便得出,与事实真理的实质在于“符合”不同,逻辑真理的实质在于必然的排假。仅当在必然的排假的意义上逻辑真理才可必然地为真,“符合”意义上的真理总是偶然的。
从历史上看,真假的观念最先起源于经验知识方面,逻辑知识中的真假概念只是对它的引申而已。在事实真理观看来,对一命题而言,在诸相关事态中,有的事态使其为真,有的事态使其为假,而其它事态则对该命题真值的确定无关。然而逻辑真理观却将那些与一命题真值无关的事态都定义为可使该命题为真;比如将p∧q和p∧q都定义为是使pq为真的真值条件。逻辑学家们为什么要这样定义?简单地讲,乃为了使逻辑学中所谓(与假相对而言的)真之实质不在于“符合”,而在于排假,从而保持逻辑命题的二值性,以为逻辑真理之重言永真性奠定最广阔的基础;我们在下文的讨论中将要表明,没有这种定义所奠定的广阔基础,逻辑真理将只可能建立于严格的同义反复的狭隘基础之上,这种条件下的逻辑真理从实质上看的确琐屑无聊。因此,逻辑真理之所以是永真的,或必然地不为假的,乃因为逻辑真理必然地排假,除此之外再无其它逻辑可能性。这即是逻辑推理的有效性的根源。
二、论有效演绎推理之逻辑内容的必然保真的可扩大性
倘若关于逻辑真理的这个观点能够成立,我们便可由此出发来论证有效的逻辑推理无论在事实内容方面还是逻辑内容方面都可是必然保真扩大的;换言之,在这两个方面有效推理都可不具同义反复性。以重言式pp∨q(2)为例,在事实真理观看来,(2)之前件p所断言的事实内容为p,而既然合取命题p∧q和析取命题p∨q所断言的内容在事实真理观和逻辑真理观来看基本相同,则我们就可认为(2)之后件p∨q所断言的事实内容即为p∨q。这样从p所断言的事实内容p为真,可推出p∨q所断言的事实内容p∨q为真,但p和p∨q在自然语言中绝不必然同义,因而p∨q之事实内容也不必然地与p的事实内容相同或包含于其中。试设想一个使用自然语言十分严肃的场合比如法庭审判,假设p表示“a犯了谋杀罪”,p∨q表示“a犯了谋杀罪或a违反了交通规则”。在这里当p真时,p∨q亦必真。按正统的观点,pp∨q既是同义反复的,那么在p和p∨q的事实内容的关系上就有两种可能性:或者p∨q的事实内容包含于p的之中,或者p∨q的事实内容与p的是相同的。不过既然p是没有逻辑结构的原子命题,则p的事实内容就是构成命题的独立的最小意义单位。因此,p∨q的事实内容便不可能是p的事实内容之一部分(即包含于p的之中),因为作为命题,p∨q的事实内容不可能比p的事实内容更小。所以唯一的可能是p∨q的事实内容与p的事实内容相同。现在如果法庭认定p为真,则应依法对a处以极刑。可如法庭不知p为真,只认定p∨q为真,则无论怎样分析p∨q的意义也不能依法处a以极刑,因为严格地讲,p∨q仅表示关于两个事实的可能性而非确凿的事实。但若p∨q与p果真同义(即它们的事实内容相同),则法庭只须分析清楚p∨q的涵义就应依法对a处以极刑,就像在认定p真时所该做的那样。可法庭是无权只根据关于事实的可能性就依法给被告定罪的,即使这种可能性有着所谓充分的证据。所以p∨q和p在事实内容上并不同义,就此而论,p∨q的事实内容大于p的事实内容,重言推理pp∨q在事实内容方面必然保真地扩大了。
另一方面,重言推理在逻辑内容上也是可必然保真扩大的。然而确切地讲,什么是逻辑命题的逻辑内容?逻辑真理的本质既在于必然的排假,那么我们就可运用逻辑命题所排除之事态的大小来定义命题的逻辑内容。但内容是一个相对的概念,只有在与其它内容的比较中一内容才可得到自身明确的定义。并不是任意两个逻辑命题的逻辑内容都是可比较的,正如并非任意两个事实命题的事实内容都是可比较的一样。我们必须运用逻辑命题的排假方式(即使得该命题为真的真值条件)和命题使用这些排假方式所排除之事态(即使得该命题为假的真值条件)的结合来为命题的逻辑内容下定义:仅当两个逻辑命题的排假方式以如下形式相联系,使得在这两个命题分别作为一推理的前后件时,该推理的形式是个重言式;在这种条件下,这两个命题的逻辑内容才是可比的,而这些命题所排事态之大小就是衡量它们逻辑内容大小的标准。换言之,只有有效推理之前后件的逻辑内容才是可比较的,因为我们只对有效推理感兴趣,只有有效推理所产生的结果才可作为逻辑知识,根据上述定义,命题pp∨q(2)既是个重言式,其前后件的逻辑内容就是可比的。(2)之前件所排事态为p,其后件所排事态则为p∧q,其后件所排事态明显地大于其前件所排之事态,故命题(2)为逻辑内容必然保真扩大推理。重言命题(3)p(qp)的情况也一样,因为它的后件所排事态q∧p明显地大于其前件所排事态p。同理,(qr)[p∨(qr)](4)之前件所排事态为q∧r,其后件所排事态为p∧(q∧r),其后件所排事态亦明显地大于其前件所排事态。故(2)、(3)和(4)之前后件都并非是同义反复表达式:它们因此都是必然保真扩大推理。此外,重言式p∨p排除的是矛盾式p∧p,后者表示不可能事态,故凡是排除可能事态的命题之逻辑内容都大于p∨p的逻辑内容。而p∧p既是永假式,则就没有任何逻辑内容。
然而我们现在似乎遇到了一个反例;为了弄清这一点,首先让我们考察一下逻辑等值意味着什么。按照传统的观点,逻辑等值命题的内容是相同的;确切地讲,按照我们的观点,就两个等值命题的关系而言,逻辑等值式实际上乃表示等值命题可用互相通用的方式对同一使它们为假的事态的排除。以pqp∨q(5)为例,该等值式表示,在p和q的4种可能的真值组合中,其左右支均可用p∧q、p∧q、p∧q这三种方式排除唯一使它们为假的事态p∧q。既然pq和p∨q所排除之事态和所用之排假方式都相同,故它们的逻辑内容完全相同,(5)式之重言性就表明了这一点。但是,命题(6)pp∨(q∧q)也是重言等值式,由于p∨(q∧q)可变形为(p∨q)∧(p∨q),根据(6),pp∨q(2)即可表示为(p∨q)∧(p∨q)p∨q(7),在p和q的4种可能真值组合(事态)1.p∧q、2.p∧q、3.p∧q、4.p∧q中,(7)之前件排除3和4事态,而其后件仅排除3事态,因此(7)之前件的逻辑内容大于其后件的逻辑内容。p既与(7)之前件逻辑等值,p的逻辑内容就应大于p∨q的逻辑内容;这对我们在前面关于pp∨q(2)在逻辑内容上是必然保真扩大推理的论证是个反例,它促使我们进一步地去研究逻辑等值到底意味着什么。
为了较精确表述起见,我将“逻辑内容[,1]”定义为可使有效推理的前后件都具有真值的原子事态如p、q、r等,由这类原子事态所组成的复合事态如p∧q等亦属这个范畴;将“逻辑内容[,2]”定义为只使有效推理的前后件之一个具有真值而不能使另一个也具有真值的(原子)事态。再以pp∨q(2)为例,p可使(2)之前后件都具有真值,当p出现时,其前后件都为真,故p对(2)而言是逻辑内容[,1]。另一方面,q只能使(2)之后件p∨q具有真值,却不能使其前件p具有真值,因为p的真值与q是否出现无关,q对于(2)即是逻辑内容[,2]。具体说来,(6)可改写成pp∧(q∨q)(8),而(8)之左支所排对象为p,其右支所排对象为p∨(q∧q),在这里对(8)而言,由于其左右支都排除了p,故p是逻辑内容[,1];而(q∧q)则涉及到了可能事态q。因为q∧q作为复合命题虽表示不可能事态,但其由以构成的原子命题却涉及了可能事态q,这一点在推论中对有关命题的逻辑内容的确定起到了重要的作用。如果说任何命题的确立都是以否定矛盾式为前提的,那么(8)之左支p所排除的矛盾式应是(p∧p)而不是(q∧q)。简而言之,(8)之左右支所排逻辑内容[,1]相同,但其所排逻辑内容[,2]却不同。联系到前面对等值式的讨论,可知等值命题之左右支所排逻辑内容[,1]是相同的,可如涉及了逻辑内容[,2][像(8)那样],则它们所排逻辑内容[,2]自然并不相同。如此说来,(8)之左右支的逻辑内容[,1]相同,但其右支涉及了作为逻辑内容[,2]的q,其左支与q无关,故(8)之右支的逻辑内容[,2]大于其左支的逻辑内容[,2]。由此可知,诸逻辑等值命题的逻辑内容[,1]必相同;但如果其中一命题论及了而另一命题却没有论及逻辑内容[,2],则当然前一命题的逻辑内容[,2]大于后一命题的逻辑内容[,2]。这样,回过头来再考察前面所述的那个反例,即可看出,p的逻辑内容[,2]小于(p∨q)∧(p∨q)的逻辑内容[,2];但它们的逻辑内容[,1]则相同,这使得p和(p∨q)∧(p∨q)在有效推理中可互相等值地代换而不影响推理的有效性。这就说明了何以pp∨q(2)是并非同义反复的重言式,而从(2)通过(6)推导出的(p∨q)∧(p∨q)p∨q(7)却是同义反复的重言式的缘故。因为p∨q的逻辑内容[,2]大于p的逻辑内容[,2],尽管它们的逻辑内容[,1]相同,因此pp∨q(2)是逻辑内容扩大的重言推理。另一方面,(7)之前件(p∨q)∧(p∨q)的逻辑内容[,1]大于其后件p∨q的逻辑内容[,1],由于(7)的前后件涉及的事态完全相同,使得(7)没有逻辑内容[,2],故(7)是同义反复的重言式。而由(2)的非同义反复性推出(7)的同义反复性,乃是利用了(6)的逻辑内容[,2]之扩大性的缘故,换言之,在通过(6)从逻辑内容上具有非同义反复性的(2)推出(7)的过程中,就将(6)的所扩大了的逻辑内容代入了(2)之前件从而得出了(7)的同义反复性。至此即可得出,(2)和(3)p(qp)的并非同义反复性都导源于它们的逻辑内容[,2]的扩大。(3)之后件所排对象为q∧p,其前件所排对象为p,所以其后件在逻辑内容[,2]上大于其前件。p(pq)(9)的情况也一样,(9)之前件所排对象为p,其后件所排对象为p∧q,故(9)之后件的逻辑内容[,2]大于其前件的逻辑内容[,2]。另一方面,以p∧qp(10)为例,其前件所排对象p∨q,其后件所排对象是p,因此(10)之前后件的逻辑内容[,1]相同,可其前件的逻辑内容[,2]大于其后件的逻辑内容[,2],故(10)是同义反复的。
综上所述,我们似已有较充分的理由作出如下推断:有效逻辑推理在逻辑内容上有不扩大(同义反复)的和扩大(非同义反复)的两类。有效推理的逻辑内容[,1]必不是扩大的;而凡是并非同义反复的有效推理,其逻辑内容的扩大必是其逻辑内容[,2]的扩大之所致。从理论上讲,这是因为根据有效推理的逻辑本性,其前件为假的真值条件的数目不可能少于其后件为假的真值条件的数目,否则即为无效推理。这事实使得有效推理的逻辑内容[,1]必不是扩大的;换言之,有效推理的必然保真性使得其逻辑内容[,1]必具不扩大性。此外,这事实并不排斥有效推理在逻辑内容[,2]上的可扩大性;换言之,其逻辑内容[,2]的可扩大性,使得有效推理可具有必然保真的并非同义反复性。事实上,我们现在已有理由断言,大部分重要的重言式都因此而具有非同义反复性。
到此为止,我们自然会面临这样的问题:既然有效推理将其前件的真必然地传递到了其后件的真之上,那么有效推理的内容何以能扩大?事实上根据前面的分析经验我们便可知道,有效推理的前件可在事实真理意义上为真,而其后件则可在逻辑真理意义上为真,在这种条件下,有效推理并非将其前件事实的真必然地传递到了其后件之上,因为其前后件是在不同意义上为真的。再以命题(3)p(qp)为例,(3)之前件p没有逻辑结构,故只能在“符合”的意义上为真,但(3)既是重言式,其后件qp中的q就可取任意真值,因此其后件qp只能在排假的意义上为真。当(3)之前件为真时,其后件是在不同意义上必然为真的;而在此条件下如(3)的后件之为真确实只能来自于其前件之为真的传递,则(3)之前后件就必然地只能在相同的意义上为真。所以(3)之为永真式不可能是因为(3)将其前件p对某事态的符合必然地传递到了只是作为排假方式的其后件qp之上,而是因为(3)之前后件各自排假方式的逻辑结合使得(3)必然地排除了使它为假的真值条件p∧(qp)。我还可以举出一个论据来支持这个论点,那就是当p为假时,(3)仍是有效的,即仍具有必然保真性。这事实理应会使那种只用“真理的传递”来解释重言推理之必然保真性的观点不能成立,因为如(3)的有效性果真必然地只来自于对真的传递,则在这种完全没有任何意义上的真理的传递的情况下,(3)必不再具有必然保真性(有效性),但事实上(3)仍是永真(有效)的,因为(3)永在排假。另以qp∨p(11)为例,当其前件q为真时,只能是事实的真,其后件p∨p本身乃是重言式即逻辑真理,我想这便足以证明了,(11)之为重言式不可能由于其后件的真必然地来自于其前件的真的传递,一个偶然的真是不可能产生必然的真的;(11)之重言永真性只可能得自于(11)自身的逻辑形式。总之,当其前件为真时,有效推理之后件的真的必然性,并非必然地来自于有效推理之前后件为真的相同性,而是必然地来自于有效推理之前后件的排假方式之结合使得有效推理的逻辑形式必然地排假,后者之所以会产生,则根本上导源于逻辑学对逻辑常词的定义,主要是逻辑学家将假命题之外的一切命题都定义为真。所以严格地讲,逻辑真理之永真性必然地来自于逻辑学根据逻辑基本规律将假命题以外的一切命题都定义为真;换言之,来自于将逻辑真理定义为逻辑命题的必然的排假方式;有效推理的事实或逻辑内容之必然保真地扩大根本上即导源于此。既然逻辑真理观将逻辑命题真值的二值性绝对化了,只要一逻辑命题必然地不假,它就必然地为真。逻辑真理的这种永真性表明了,逻辑真理不是对某具体事态的“符合”而是对可能经验(事态)由以呈现的基本框架的显示,这种显示依重言式的本性是不可能出错的。此外,倘若其前件为真时,有效推理的后件之为真的必然性只来自于有效推理将其前件的真传递到其后件之上,则作为经典演绎系统基础的命题逻辑的推演能力将是非常弱的,因为这样的话,只能有一小部分重言式(即那些同义反复的重言式)才可以从该系统中推出来,而其它许多因其具有并非同义反复性故而更重要的重言式,将不能从该系统中推出来,因为这些重言式之为永真明显地于这种所谓“真理的传递”即在为真意义上的同义反复无关。前述p(qp)和qp∨p等等重言式即属此例。换言之,如果只有具有同义反复性的重言式才是命题逻辑的定理,则命题逻辑系统将是不完全的;所以已获证明的命题逻辑系统的完全性就足以证明了重言推理的有效性不必然来自于这种“真理的传递”。
按照传统的观点,在经验科学中科学家使用逻辑推导一般服务于两种基本目的:其一是从一为真的事实命题出发,经过特定而有效的逻辑推导,以将被前提所包含的内容用清晰或便于操作的形式表达出来。其二是从一假说推导出可观察的结论,以检验该假说的真实性。如果有效逻辑推理的内容果真是可必然保真地扩大的,那么在这两个方面会产生什么影响?先看第一个方面。一般而言,科学中的传统认为,从一为真的事实命题出发,无论经过怎么复杂曲折的有效推导,最终结论的内容总归仍是处于其前提的断言范围之内。然而,从另一方面来看,实际上科学实践本身早已为我们作出了有关启示:在对一为真的前提所作的科学推导的过程中,逻辑推导的步骤无论经过多么严格的检验,所推出的结论必须经过观察的确证方可最终得以确立或生效,这乃是经验科学研究中的通例。科学家们为什么要如此行事?按照我们在上文中所表述的观点,可靠的推理的结论与其前提可在不同的意义上为真。这就意味着,可靠推理的前提可以断言的是一回事,而其结论可以断言的是另一回事,尽管该结论是不可能为假的,但该推理的前后件所断言的内容在事实真理观看来却可并不相同乃至并不相干。事实上,经验科学中凡意义重大的推理大部分都是这种性质的推理。这表明,即使在科学研究中所做的推理是可靠的,最后所得出的结论的内容也很可能在原则上而非仅仅在形式上是新的,因此最终只有观察才能告诉我们该推理所产生的结论到底断言的是什么以及其断言的内容是否为事实真理;因为所推出之结论有可能是在排假意义的逻辑的真。
至于观察对从一假说推导出的结论的检验作用到底说明了什么这问题,除了从假说直接推导出可观察结论这一简单的方面以外,更复杂的一方面由于确证悖论的存在,一直争议很大。就假说“所有的乌鸦是黑的”(x)(f[,x]g[,x])(1)而言,由于它逻辑等值于另一命题“所有的非黑色的东西都是非乌鸦”(x)(g[,x]f[,x])(12),并且传统认为逻辑等值命题的内容是完全相同的,因此一个非黑色且非乌鸦的东西(g[,a]∧f[,a])比如我的手表既然是命题(12)的确证事例,则亦应是(1)的确证事例,但这是非常违反直觉的,不过按我们在本文中所阐明的方法,这个疑难则不难澄清。我们已经论证了,在不涉及逻辑内容[,2]的情况下,所谓逻辑等值只表明等值命题的逻辑内容是相同的,但它们的事实内容则可并不相同,就(1)的替换事例f[,a]g[,a](1′)和(12)的替换事例g[,a]f[,a](12′)而言,(1′)的事实内容为f[,a]∧g[,a],(12′)的事实内容则为g[,a]∧f[,a],这说明(1′)和(12′)尽管逻辑等值,但事实内容却并不相同。而科学确证或证实只能是对科学命题的事实内容而非逻辑内容的确证或证实,故(1′)和(12′)的证实事例不可互换使用。将这道理推及到(1)和(12)上,则表明(1)和(12)的确证事例不可互相通用。由此可得出,就科学实践而言,当我们要检验一个假说时,企图通过使用该假说的等值命题的更好操作的确证事例来确证该假说,在理论是无效的,如果这些等值命题的事实内容不同的话。比如我们找到(12)的确证事例g[,a]∧f[,a]并不能在严格意义上确证(1),因为g[,a]∧f[,a]的出现只能起排假的作用,即排除了使得(1)和(12)为假之事态f[,a]∧g[,a]出现的一次机会;但这同时也减少了(1)的确证事例f[,a]∧g[,a]出现的一次机会;故g[,a]∧f[,a]的出现不能提高(1)的真实(确证)度。因此,就从一假说经过等值变换所推导出的便于观察的结论而言,如该推导的前后件在事实内容上是不相同的,则观察对该结论的成功检验并不能在严格意义上确证该初始假说,而只能起到排除该假说的否证事例实际出现的机会的作用。倘若固守等值条件的普遍有效性,不考虑等值命题的事实内容是否相同,只根据它们的逻辑内容相同就断定等值命题的确证或证实事例是可互相通用的,那么我们就很容易据此确证或证实不存在的东西的存在。举例来说,如设“所有的独角兽都是有尾的”可符号化为(x)(b[,x]r[,x])(13),独角兽既不存在,(13)当然不可能有确证事例和事实内容。但(13)与(x)(r[,x]b[,x])(14)逻辑等值。若认为凡等值命题的确证事例都可互换使用,则(13)就可因r[,a]∧b[,a]这类事例而得到确证,因为r[,a]∧b[,a]乃是(x)(r[,x]b[,x])(14)的确证事例,而(14)的确证事例r[,a]∧b[,a](意即无尾且不是独角兽的东西如我的手表等)是随处可找到的。事实上,按照该思路,我们可以从经验的东西,通过逻辑手段符合科学程序地确证或证实一切虚构的东西的存在。(13)没有事实内容,而(14)则有很容易得到确证的事实内容,尽管(13)和(14)是逻辑等值的,这事实难道不是有力地表明了科学确证或证实只能是对命题的事实内容而非逻辑内容的确证或证实吗?如果我们将命题的事实内容与它的逻辑内容区分开来的工作是有效的,那么等值条件所持的等值命题的全部内容都是相同的观点就只适用于等值命题的逻辑内容,而不适合于它们的事实内容了。
【参考文献】
[1]wittgenstein:tractatuslogico-philosophicus,routledge&keganpaul,1974,4.46,4.464,5.43,6.1,6.11,6.1251.
[2]s.f.巴克尔:《逻辑原理》,四龙九等译,湖北教育出版社,1988年版,第253—257页。
[3]罗素:《数理哲学导论》,晏成书译,商务印书馆,1982年版,第144—145页。
[4]塔尔斯基:《逻辑与演绎科学方法论导论》,周礼全等译,商务印书馆,1989年版,第25页。