欢迎您访问大河网,请分享给你的朋友!

当前位置 : 首页 > 范文大全 > 实用范文

智能交通研究(6篇)

来源:其他 时间:2024-08-12 手机浏览

智能交通研究篇1

1交通方式识别关键技术研究

1.1交通方式识别概述

模式是客观事物活动的方式,它包括客观事物本身,也包括有客观事物在时间和空间分布的信息。时间万物都有其独特性,这种独特性可用三个方面来理解,即可观察性、可区分性和相似性。

在AI(人工智能)领域,模式识别已经是一个重要的分支,和人类自身的识别系统相比,计算机的模式识别,其优势在于计算机拥有极强的计算能力,他可以储存数量极大的样本,并通过对这些样本的分析来提取特征,而完成这些工作,计算机是高效的。如图1所示为计算机模式识别系统的五个基本组成单元。

如图1所示,现阶段的模式识别系统一般都是由五个基本单元来组成。

(1)数据获取单元;(2)预处理单元;(3)特征提取和选择单元;(4)分类器设计单元;(5)决策单元。

1.2定位技术研究

1.2.1基站定位技术

在各种定位技术中,基站定位技术是最早开始应用的,基站定位目前采用的主要技术是COO(CellofOrigin)技术,COO技术的基本原理是,在移动终端登录到网络以后会上报自己的小区ID,移动网络会据此估算用户的当前位置,如图2所示。

1.2.2GPS定位技术

GPS由卫星、地面监控系统和移动终端三个部分组成。卫星提供精密的时间标准并提供定位信息,地面监控系统主要是对卫星工作状态和运行轨道的监控。

1.2.3A-GPS定位技术

A-GPS定位技术,即辅助GPS定位技术,它是一种对GPS定位方法的改进,A-GPS定位技术仍然无法解决数据缺失和数据漂移问题,但由于有A-GPS服务器的存在,它可以起到很多辅助的作用。

1.3典型识别算法研究

在数据挖掘、机器学习和模式识别等领域中,都需要分类算法,分类算法可以分为三个步骤:(1)对已知类别训练集进行分析;(2)生成分类规则;(3)通过规则预测新数据的类别。

2基于智能手机功能的交通方式识别研究

2.1数据采集

按照现阶段智能手机的流行配置,本系统要求智能手机含有GPS模块、加速度传感器、陀螺仪、声音传感器和SIM卡。因为现在一般的智能手机都能够满足这个要求,本文就不再赘述手机选型。但是采样频率还是需要预先设定:GPS数据每秒采样1次,加速度传感器和陀螺仪的采样频率为32Hz,声音传感器每秒采样30次。

2.2特征提取

特征量主要包括时域上的特征量,如均值、过均值率、标准差、中位数、最大值与最小值的差、个数等,频域上的特征量包括和、方差两类。

(1)与速度相关的特征量;(2)与加速度相关的特征量;(3)与声音相关的特征量;(4)与交通站点相关的特征量。

2.3基于改进随机森林算法的模式识别

获取所有的特征之后,随机森林算法过程可做如下描述:(1)输入的数据即样本集,每个样本包含有若干个特征属性和一个类别属性。(2)训练样本集由Bagging方法随机抽取,最后形成的是由N个样本组成的训练样本集。(3)从样本的特征属性中抽取部分属性作为分裂属性。(4)以上步骤重复n次,最后形成由n棵决策树构成的森林,最后再进行汇总排序。

2.4特征量有效性的验证

特征量有效性的验证即比较使用和不使用的情况下F值的大小就可以了。

2.4.1陀螺仪

如图3所示为陀螺仪有效性验证结果,验证结果表明,在不使用陀螺仪的情况下,8种类别的F值均有下降,这也说明,陀螺仪的引入对于交通方式识别起到了一定的作用。

2.4.2声音传感器

如图4所示为声音传感器有效性验证结果,验证结果表明,相比较陀螺仪,声音传感器的引入对于交通方式识别起到的作用更大。

2.5模型简化

(1)特征重要性排序;(2)模型简化结果。

模型简化包含两个部分,一个是特征集的简化,那么在特征集简化之后,就可以进行模型本身的简化。

智能交通研究篇2

关键词:城市交通;智能交通;交通管理;电子警察系统

0引言

智能交通管理系统包括信息传输技术、自动化控制技术、计算机技术和传感器技术,是将上述技术进行融合应用于道路交通管理系统而成立的交通运输系统,具有实时、精确和高效的特性。系统能够将各种技术和信号采集方法获取大量交通状况信息,通过获取信息情况进行分析形成完整有效的交通控制方案,同时将控制方案通过交通信号灯出去,使得当前道路信息和交通管理方案被交通控制设备、人员和道路司机获得,大大提高了交通运输系统的运输和管理效率。智能交通系统最早研究开始于上世纪60年代,以美国、日本和德国为代表的发达国家投入了大量人力和物力,以解决城市道路交通拥堵问题。如美国联邦公路署针对美国当时的交通基础设施特点和实际路网建设情况,建立起领先世界的车辆智能管理系统,对于公交信息进行提示、电子收费系统和交通需求管理系统,充分利用GIS技术和GPS技术实现对于城市交通通行的信息化、智能化管理。相对于国外的交通管理系统建设,我国已经开始初步建设。例如,作为我国首批智能交通示范城市之一的广州,经过多年研究,交通信息应用平台、物流数据平台等已经完成初步框架,能够实现数据的采集、分类、有效存储和查询等工作。总体而言,我国智能交通管理系统仍然处于初级阶段,与国外相比仍有较大的差距。

1城市交通管理系统发展现状

根据调查分析,我国当前城市智能交通管理系统建设还存在较多的问题,参考发达国家建设情况和我国城市交通发展现状,我国智能交通管理系统发展存在如下问题:(1)城市道路建设与城市发展不匹配,对于城市日益增加的人口和机动车难以承受,造成城市交通拥挤、堵塞情况日益严重。(2)道路网络发展不完善,规划缺乏长远眼光,造成当前道路功能不明确,道路监管力度不够,严重影响道路的通行能力和路网整体功能的发挥。(3)城市交通混合特征严重,如行人、自行车、机动车和电动车等混合现象较为严重,同时机动车占用人行道、电动车占用机动车道等现象时有发生,对于道路交通的安全通行带来较大的压力。(4)交通安全配套设施不完善。基于我国建设初期的基础较差,当前对于道路建设的重视力度较大,对于配套安全设施的重视力度不够,造成当前交通标志建设、交通标线和标志不规范,或者被行道树影响较为严重。(4)交通安全配套设施不完善。重视道路建设、轻视配套安全设施,交通标志建设、交通标线、标志不规范,或者被行道树遮挡等情况严重。(5)公交优先策略执行不够彻底。当前,城市公交覆盖不够全面,造成市民具有一定的排斥情绪,同时部分地方公交优先策略无法得到实施和保障,无法实现公交的大运量功能。

2城市智能交通管理系统概况

根据我国智能交通管理系统发展情况,当前智能交通管理系统包括以下主要内容。

2.1智能交通监控系统

智能交通监控系统应用于城市交通管理中,主要是为了保证交通顺畅,通过监控系统了解监视区域车辆排队、堵塞和信号灯等交通情况,及时采取措施疏导交通。根据智能交通管理系统的组成,能够实现道路交通情况的实时监控和指导。根据智能监控系统能够识别道路肇事情况的过程,可以给民警提供道路事故发生过程。

2.2城市交通流诱导系统

对于城市智能交通管理系统,城市交通诱导为当前应用的重点,首先需要对于车辆进行定位分析,然后对于车辆行驶路线进行诱导和路线的规划,适时解决重要路段和交叉口拥挤情况,为道路交通提供方便快捷的交通路线,提高交通效率。根据实际情况需要,交通诱导系统包括交通信息控制中心、通信系统和交通诱导信息系统。交通信息控制中心能够实现道路现状、交通流量、交通流速、道路占有率等信息的采集,然后对于信息进行处理,根据数据库存储分析进行交通信息的诱导控制。

2.3电子警察系统

对于智能交通管理系统,电子警察系统也是必不可少的一部分。主要是利用多种技术手段对于监控区域内车辆进行实时记录,具体技术包括信心网络通信、远程数据监控和视频检测。电子警察系统主要是安装在交叉路口和路段上,对于交通违章行为和事故情况进行自动检测和记录,将检测系统返回到公安部门,然后进行分析处理,实现对于交通违法和肇事者的有效管理。

2.4智能公交管理系统

智能公交管理系统是智能交通管理系统的重要组成部分,为了能够调动公交、有效准确进行排班,实现对于公交车辆的利用率和行驶速度,减轻道路拥堵现状。系统能够提高公交企业的管理水平和运营效率,对于公众而言是能够承受更为完善的服务。根据实际需要,公交车辆智能管理系统包括公交车辆智能调度系统、公交调度的车辆监控系统和公交电子站牌。实现对于公交车辆从出站、运行和乘客上下车都进行实时监控,优化车辆配置和投放,大大提高车辆运输效率和出行体验。

2.5突发事件响应系统

除了上述常用功能外,突发事件响应系统也是智能交通管理系统的重要组成部分,主要包括报警系统、快速救援系统及事故管理系统。如果发生重特大交通事故和区域治安事件能够实现报警的实时化和自动化,提高应急效率,大大降低交通事故的危险程度和发生频率。

3智能交通管理在城市交通中的应用设计

根据上一节对于智能交通管理系统的概念和组成,当前主要应用体现在以下几个方面。

3.1电子不停车收费系统(ETC)

随着RFID技术的不断进步和发展,使得当前不停车收费系统得到广泛使用,当前应用较为广泛的ETC收费系统能够大大提高通行效率,降低道路堵塞程度和拥堵事件。其次是ETC的使用,能够大大降低交通管理成本,传统的人工收费系统被代替,降低人工成本。

3.2城市交通调度管理系统(TMS)

智能交通管理系统的另外一种应用为城市交通调度管理系统,为了提高对于车辆管理的效率,进而提高智能交通管理效率。TMS系统能够通过技术对于交通信息进行搜集和处理,实现对于信息搜集和处理的有效性,能够实现车辆管理和路线规划的最优化,在缓解交通压力的同时也减少了资源浪费。

3.3电子注册管理(EVR)

针对当前交通部门的管理难题,EVR能够对车辆进行追踪和智能化管理。EVR系统的应用具有较为明显的优势,具体如下所示:(1)EVR技术的应用缩短了车辆登记时间,同时赋予车辆一个固定身份证,使得车辆能够被全球追踪,不仅保证车辆安全,同时对于车辆安全运输提供保障。(2)EVR技术的应用改善了交通管理部门的工作环境,能够实现对于车辆的不接触管理,大大提高管理效率。

4结语

城市智能交通系统的应用对城市交通的顺畅起到了较大的保障作用。基于城市智能交通系统对城市道路交通管理、整合社会资源和交通信息的智能化建设和管理提供较为明显的促进作用,具有较为重要的实际意义。智能交通系统的应用,对于城市建设的合理发展和社会稳定具有关键性和实质性的推动作用。

参考文献:

[1]张林闯.城市智能交通管理系统的设计与实现[J].现代经济信息,2015(24):281-282.

[2]王鹏.城市智能交通管理系统的设计与实现[D].哈尔滨:黑龙江大学,2014.

[3]刘绪启.城市智能交通管理系统设计流程浅谈[J].中国交通信息化,2009(10):144-145.

[4]何晶,沈晓权.城市智能交通管理系统设计研究[J].城市建设理论研究(电子版),2016(11)

[5]李淼.城市智能交通管理系统方案研究与设计[J].数字化用户,2017,23(25).

智能交通研究篇3

关键词新交通系统,城市轨道智能交通系统,综合监控系统,旅客向导系统

智能交通系统(IntelligentTransportationSysem,简称ITS)是最近十几年提出的新概念。从城市交通系统来看,无论是公共交通,还是非公共交通部分,ITS的研究还仅局限在道路交通,对于城市轨道交通鲜有涉及。

从另外角度讲,城市轨道交通系统作为先进的公共交通系统(APTS)组成部分,已被纳入ITS体系。但由于城市轨道交通的独特性,城市轨道智能交通系统(UrbanMassIntelligentTransportationSystem,简称UMITS)各组成要素与传统ITS不同,可以将其作为独立的系统进行研究。ITS(主要指道路)所解决的本质问题是:如何将交通高峰时期的车辆有效地分布在道路网中,尽量缩短人们的出行时间[1]。城市轨道智能交通系统的研究对这一本质问题的解决提供了新的思路。即将交通高峰时的部分人流有效地分布在城市轨道交通网中,并间接影响与之相关的城市道路交通网。这意味着,UMITS与道路ITS相结合,将构成相对完整的城市智能交通系统。对这一本质问题的解决将产生实质性的影响。

1城市轨道智能交通系统及其基本构成

1.1城市轨道交通系统的特点

广义的城市轨道交通以轨道运输方式为主要技术特征,是城市公共客运交通系统中具有中等以上运量的轮轨交通系统,在城市公共客运交通中起骨干作用[2]。

城市轨道交通与地面常规交通方式相比,具有运量大、速度快、能耗低、污染少、可靠性强、舒适性佳、占地面积少等优点。另外,城市道路拥堵是世界性的通病。道路不可能无限地拓宽、增加,道路ITS也不可能从根本上解决交通拥堵。而城市轨道交通的建设,则可有效减少地面交通车辆,是缓减道路拥挤的方法之一。而随着城市交通中轨道交通客运份额的增大,对其智能化、系统化的研究也就日趋重要。

1.2城市轨道智能交通系统的提出

城市轨道交通系统涉及的科技领域相当广泛,包括通信、电子、计算机、车辆、供电、环控、防灾、机电等。应该运用系统工程的理论与方法,将城市轨道交通系统各组成部分有机地集成,使其呈现出各组成要素所没有的整体功能。

根据城市轨道交通的特点及其所涉及到的不同领域,UMITS的基本构成应包括如下内容:先进的通信系统,先进的供电系统,综合监控系统(ISCS),旅客向导系统(PIS),列车自动控制系统(ATC),车站设备监控系统(EMCS),防灾报警监控系统(FAS),自动售检票系统(AFC),管理信息系统(MIS)等。其基本构成如图1所示。

综上所述,并结合国内外专家对ITS的定义,对UMITS的定义可归纳如下:在较完善的基础设施(包括车站、站台、车辆段和通信等)上,将先进的信息、通信、控制、传感器和系统综合等技术有效地集成,并应用于城市轨道交通系统,从而建立起在城市轨道交通范围内发挥作用的,并能间接影响城市道路运输系统的实时、准确、高效的运输系统。

2综合监控系统

2.1综合监控系统的功能

2.1.1综合监控系统功能构成图

综合监控系统(IntegratedSupervisoryandControlSystem,简称ISCS)在UMITS中的位置类似于ITS中的ATMS(先进的交通管理系统),但在具体内容上与ATMS有很大不同。ISCS是以行车指挥与列车运行自动化为核心的复杂大系统,它包括通信的综合网络管理系统(NMS)、电力监控系统(SCADA)、列车自动监控系统(ATS)、旅客向导系统(PIS)、车站设备监控系统(EMCS)、防灾报警监控系统(FAS)、自动售检票系统(AFC)、管理信息系统(MIS)等。ISCS将先进的信息技术、通信技术、控制技术和系统工程等运用到城市轨道交通中,对各个职能系统的运行管理和综合监控,从而最大限度地调动轨道交通系统内部各专业、各种设施、各营业线的内在潜力,使之成为完整的有机整体。

国外ISCS的发展已有30多年,但大都局限在对几种重要职能系统的综合管理与监控。随着信息技术的飞速发展,有必要对ISCS的功能进行扩展,将其更好地系统化、智能化。作为构筑UMITS体系的核心部分,ISCS的功能结构一方面应考虑UMITS与道路ITS的衔接,预留与道路ITS的接口;另一方面,应符合我国国情和城市轨道交通的发展现状。据此,ISCS的功能应如图2所示。各车站设备通过广域网将信息实时传递给控制中心,各职能系统实时处理这些信息,并根据实际情况对各车站设备实时监控。

2.1.3关联子系统的主要功能

对处理过的信息进行综合、统计和对比后,将与城轨系统各级管理人员关联的信息筛选出来,提供给MIS;将与旅客关联密切的信息筛选出来,实时反馈给PIS和道路ITS中的ATIS,同时将ATIS传递来的实时信息反馈给PIS。

2.1.4汇总子系统的主要功能

将联机综合处理后的重要信息定期向上级主管部门汇报,汇总功能也可通过MIS来实现。

2.2综合监控系统的体系结构

ISCS应是一种分布式控制系统。系统对于数据通信的要求可分四个层次:信息层、通信层、控制层和设备层。ISCS可采用基于“生产者消费者(productconsumer)”模式的设备网和控制网,以及得到广泛应用的以太网作为核心框架,满足系统从现场到互联网各层次的数据通信要求。

2.2.1ISCS体系结构介绍

(1)控制中心机房设备:包括数据库服务器、主服务器、通讯前置机及网络设备等。数据库服务器存放所有的数据信息;主服务器负责关联子系统、职能子系统的信息处理等项工作;通讯前置机负责同ISCS的车站主机、时钟系统、无线列调系统等通讯并收集数据。

(2)控制中心调度设备:在控制中心,可设大型模拟盘(或表示屏)用于宏观信息的综合显示。可设ATS监控台进行列车的集中控制和调度,设SCADA监控台监控各变电所供电系统,设旅客向导监控台用于旅客向导信息的和监控[4]。另外,可为其它系统(如FAS、EMCS、AFC等)设一个综合监控台。MIS工作台除在控制中心设置外,还可根据需要,通过局域网和广域网分设在各车站、办公室等各个部门。

(3)广域网通讯设备:控制中心同车站间采用点对点的备份通道,可由路由器构成广域网。

(4)车站设备:在各车站设ISCS车站主机(可设双机热备份)。车站基本分为设备集中站、非设备集中站、停车场、车辆段等。车站内有一个统一的局域网,通过智能集线器或其他方式互联,再使用一些网络安全设施,将这些系统的监视及控制信息集成到一起发往控制中心,中心级系统再分门别类地进行数据处理。

(5)UMITS与道路ITS的接口:主要是PIS与ATIS的信息交换接口,可由广域网通讯设备来完成。即在控制中心同交管局(ATIS主管部门)间,采用点对点通道,并用路由器构成广域网;另外,也可通过ADSL等技术完成PIS与ATIS间的信息交换。

2.2.2ISCS体系结构的优点

(1)通道的充分共享:在ISCS中,控制中心和车站间采用了广域网的连接,而且通道为各类信息共享,各职能子系统不必单独组网。

(2)监控设备和维护设备的共享:在控制中心,无需再为各职能子系统设立单独的主服务器来综合处理各类信息。由于实现了信息共享,在控制中心还可实现维护设备的共享,进一步提高设备的利用率。

(3)系统可靠性的提高和配置优化:该综合系统不仅可通过提供综合服务提高服务质量,同时由于系统设备的综合使用,系统配置得到优化,系统的可靠性得到提高。例如:数据库服务器、主服务器、通讯前置机、车站主机的双套设置、双局域网、双广域网等的采用,可以保证关键部位不易失效,系统的可靠性和系统的可用度得以提高[4]。

3旅客向导系统

旅客向导系统(PIS)是以“旅客”为中心进行设计与实现的。目前,在我国城市轨道交通中,还没有建立完善的旅客向导系统,给旅客带来诸多不便。

PIS在UMITS体系中的位置,类似于道路ITS中的ATIS(先进的交通信息系统)。目前,国内外资料中涉及的PIS通常是指站台导向装置。本文在借鉴ATIS的同时,对PIS的内容进行了扩展。即PIS为旅客提供的服务应包括:出行前信息服务、出行中信息服务、站台导向装置、个性化信息服务等。PIS主要为旅客提供基本的城市轨道交通信息,但如果能与ATIS实现信息共享,对解决城市交通的本质问题将起到重要的辅助作用。

3.1行前信息服务

使旅客在出行前通过多种媒体(如网络、手机、电视、报纸等)在出行起点及时获取包括轨道交通在内的各种城市交通方式的出行路径、出行时间等相关信息,为规划最佳出行提供辅助决策信息服务。

3.2出行中信息服务

这部分功能主要通过ISCS中的关联子系统,将与旅客关系密切的轨道交通信息,实时准确地反馈给PIS,使旅客通过视频、音频、电子图文等媒体,在出行途中就能及时了解最新换乘信息、车辆运行状态信息、调度信息、到站时间、票价以及与目的地相关的一些信息等。这一服务的另一重要功能是交通流信息诱导。通过ISCS中的关联子系统,将当前道路交通系统中ATIS传递过来的信息,反馈给PIS,使旅客及时了解与自己出行路径密切相关的各种道路诱导信息,包括道路状况信息、气象信息、交通状况信息等。其中,交通状况信息包括交通事件和拥挤程度信息,以及交通流量、车道占有率、车速、行程时间等交通特性,为旅客当前出行决策和路线重新选择提供信息参考,从而避免盲目换乘造成的时间延误和交通堵塞。

3.3个性化信息服务

通过各种媒体使旅客随时获取与出行有关的社会综合服务及设施的信息。旅客在获知这些信息后,就能制定或修正自己的出行计划,从而减少迂回出行和因此造成的延误[5]。

个性化信息服务还可提供文字、图像、动画等形式的商业广告,并与其他信息网互联,共享公益服务信息。此外,还可提供与城轨交通有关或无关的电子商务。城轨交通运营公司还可面向公众开设网上服务社区,接受旅客的各种意见、建议,并及时向社会公司有关信息(如各种承诺、投诉处理等)。

3.4站台导向装置

导向装置是利用语言、文字、数字和符号,采用声、光、电等现代技术,在出入口、站台、列车等乘客经过的地方由广播、(电子)指示牌、电脑等组成的各种标志与设施所构成。

为引导和组织旅客乘车,从进站处到乘车处的所有过程和通道都应设有不同功能的导向装置。尤其是在几条线路交汇的换乘站,以及实行自动售检票、使用屏蔽门、不设站台乘务员的车站,导向装置尤为重要。旅客可以按导向装置的帮助,顺利快捷地完成进站、换乘、出站等程序,减少站台拥挤和旅客在站台的停留时间[6]。4结语

从另外一种角度划分比较常用的交通形式,大体可分为道路、轨道、航空和水路等几个部分。城市道路与城际公路系统在ITS的研究中有较多相似处,但它们与轨道智能交通系统的研究有很大的不同。它们之间的不同之处,正是研究轨道智能交通系统的意义所在。

轨道交通系统的构成比较复杂,除了城市轨道交通外,还包括普通铁路、电气化铁路、准高速、高速铁路、磁浮铁路等。电气化铁路、准高速、高速铁路与城市轨道交通有许多相似处,其智能化、信息化、系统化也相对容易实现。但对于大量普通铁路,要实现智能化、信息化、系统化,就必须进行大规模的改造,而这不是在短时期内能够完成的。

目前,国内外专家对铁路智能运输系统(RITS)已有较多论著,但对于UMITS的研究还鲜有涉足。本文抛砖引玉,希望籍此引起更多人关注。

参考文献

1《中国智能运输系统体系框架》专题组.中国智能运输系统体系框架.北京:人民交通出版社,2003

2孙章,何宗华,徐金祥.城市轨道交通概论.北京:中国铁道出版社,2000

3吕永波,胡天军,雷黎.系统工程.北京:北方交通大学出版社,2003

智能交通研究篇4

关键词GIS共用信息平台智能交通管理系统

1背景

为了解决我国城市的交通问题,改善城市交通系统的性能,一方面需要通过改造路网系统、拓宽路面、增添交通设施以及道路建设等城市交通所必需的“硬件”建设来实现,另一方面需要通过采用科学的管理手段,把现代高新技术引入到交通管理中来提高现有路网的交通性能,从而改善整个道路交通的管理效率,提高道路设施的利用率,实现城市交通管理的科学性和有效性。

城市智能交通管理系统由多个子系统组成,各个子系统的信息需求复杂多样,但有一些信息是可以共享的,通过共用信息平台可以使这部分信息增值,而且整个智能交通管理系统的信息通过共用信息平台的统一存储、组织、处理,能够更有效地保证数据间关系的正确性、可理解性和避免数据冗余,提高系统中信息的利用率和传输速度。

2以GIS作为共用信息平台

智能交通管理系统主要包括视频监控系统、电子警察系统、110/122接处警系统、车辆运营管理系统、路口控制系统、公共交通系统、GPS系统、交通诱导系统等。对整个系统而言,应充分发挥子系统的作用,并做到无缝集成。

地理信息系统(GIS:GeographicInformationSys-tem或Geo-InformationSystem)作为一种综合处理和分析空间数据的技术系统,能够有效地对地球空间数据进行采集、存储、检索、建模、分析和输出。它的独特之处就在于能够把地理位置和相关属性信息有机地结合起来。众所周知,交通信息与地理位置密切相关,利用GIS技术构筑智能交通管理系统的共用信息平台,不但能够使交通信息在空间上直观明了地显示出来,并能为这些信息的深层次挖掘和后续信息服务及辅助决策提供空间属性上的支持。

信息是智能交通管理系统中重要的基本元素,也是联接各个子系统的纽带。通常把交通信息划分为两类:静态交通信息和动态交通信息。静态交通信息是指包括道路信息、交通附属设施信息、停车场信息、车辆管理信息等随时间变化较小的信息,它又可以分为基础数据(如道路路网数据等)和历史数据(如车辆违章历史数据等);动态信息主要指各类实时采集到的交通信息,如交通流量信息、视频监控信息、公交车位置信息等。利用GIS可对以上所有数据进行集成管理。针对智能交通管理系统对信息要求的特点,建立专属的地理信息数据库,通过网络互联与分布式数据库系统建立GIS平台。GIS作为整个系统的协调者,对数据和应用进行管理。

3系统的技术框架

3.1系统的总体架构

根据信息平台的一般架构,结合考虑GIS作为智能交通管理系统共用平台的要求,系统可采用三层体系结构:

(1)客户端。指的是信息平台的用户主体,包括道路使用者、道路建设者、交通管理者、运营管理者、公共安全负责部门、相关团体等。具体的服务对象由系统的建设者决定。

(2)应用服务层。以GIS作为城市交通智能管理系统的信息平台,由各个交通管理子系统采集交通数据,将这些原始数据以规定的格式返回,再对数据进行分类、抽取、挖掘和融合等处理,在数据存储的同时,将不同的信息按照规范的协议给相应的应用子系统。同时提供多种静态和动态交通信息查询接口,满足这些外部系统的交通信息需求。

(3)数据管理层。存储系统所需的基础数据,提供平台与各子系统之间的信息接口。

基于GIS平台的城市智能交通管理系统的组成如图2所示:

3.2GIS共用平台的基本功能

各个子系统由于功能的不同,获得的交通数据也不同,但大多具有信息量大、情况复杂等特点。将这些来源不同、类型不同的大量信息融合在一起,从中提取具有更多特征的更深层次的信息,并最终在系统的管理决策核心中得到应用,是维持整个系统正常运作的关键环节。信息在智能交通管理系统中的综合利用如图3所示。

GIS共用平台作为整个智能交通管理系统的枢纽,它担负着信息汇总、融合和中转的职责。其基本功能表现在:

(1)信息采集功能。从各子系统按规定的格式提取共享数据,完成对静态交通信息和动态交通信息的重组,并保证数据的正确性、可读性,避免大量数据的冗余。

(2)信息融合功能。根据各个子系统间的功能要求和内在联系,对采集来的信息在一定的准则下加以分类、统计、关联,挖掘出更深层次的信息,以用于交通管理决策。

(3)信息提供与功能。按各子系统的要求,以规定的格式向子系统传输所需信息;根据服务请求和查询权限提供给客户数据、图形或图像等信息。4主要问题与解决对策

以GIS作为智能交通管理系统的共用信息平台也存在着一些问题,主要体现在实时性和数据量过大两个方面。

智能交通管理系统要求共用信息平台能够实时刷新数据用于交通管理(如决策、指挥和调度等)和信息,从而对GIS平台提出了实时性的要求。另一方面,由于我国不允许将高精度的GIS数据刻入光盘,相当一部分地理信息基础数据需要通过无线下载方式获得,导致各子系统与平台间的数据交换量庞大,影响GIS平台的有效工作。

针对上面的两大问题可将地理信息分为基础地理信息(道路位置信息、单行道信息等)和交通属性信息(停车场位置、建筑物位置等),将大量的基础地理信息通过GIS共用信息平台通过专用短程通信(DSRC)方式下载至车载装置的内置内存介质,少量的属性信息从智能交通系统实时,通过多种通信方式送至车载设备。

对于数据量大的问题,可考虑采用数据压缩技术减少数据量,采用分布式数据库来管理数据以分担数据存储的空间,降低网络堵塞的可能性。对实时性要求高的数据通过网络在GIS平台和各子系统中传送,对实时性要求不高对数据定时传送到平台的数据库中。

5结束语

本文探讨了基于GIS平台的城市智能交通管理系统构架问题,主要讨论系统的技术框架与主要功能及可能存在的主要问题与解决方法,对系统中的细节问题还有待进一步深入研究。

参考文献

〔1〕陈俊,宫鹏.实用地理信息系统?郾科学出版社,1998.2

〔2〕陆化普.解析城市交通?郾中国水利水电出版社,2001.9

〔3〕中国智能运输系统体系框架研究总报告?郾交通部公路科学研究所,2001.7

智能交通研究篇5

关键词:多Agent;交通仿真;TrafficGrid模型;Netlogo

1引言

交通仿真是20世纪60年代以来,随着计算机技术的进步而发展起来的采用计算机数字模型来反映复杂道路交通现象的交通分析技术和方法。从试验角度看,道路交通仿真是再现交通流时间和空间变化的模拟技术,交通仿真是智能交通运输系统的一个重要组成部分,是计算机技术在交通工程领域的一个重要应用。利用基于Agent的计算机仿真通过模拟交通系统中个体的行为,让一群这样的个体在计算机所营造的虚拟环境下进行相互作用并演化,自下而上的“涌现”出整体系统的复杂。多主体模型基本思路是:由于人类社会是由大量的个体构成的复杂系统,因而在计算机中建立每个经济实体的个体模型,这样的计算机中模型被称为Agent;然后让这些Agent遵循一定的简单规则相互作用;然后通过观察这群Agent整体作用的涌现性找到人工社会的规律,并用这些规律解释和理解人类社会中的宏观现象[1]。

文中以TrafficGrid模型为基础,仿真研究了交通系统从而得出停着的车辆数量,平均等待时间等曲线,为城市规划和决策者提供了数据。

2多主体建模

主体(Agent,也有人译为智能体、)和多主体系统(Multi-AgentSystem,MAS)是随着分布式人工智能的研究而兴起的。“主体(Agent)”一词一般用来描述自包含的(self-contained)、能感知环境并能在一定程度上控制自身行为的计算实体[2]。人工智能学者Minsky在1986年出版的著作《思维的社会》(TheSocietyofMind)[3]中提出了Agent,认为社会中的某些个体经过协商之后可以求得问题的解,这些个体就是Agent。Agent至少应具备以下几方面的关键属性:①自主性:Agent具有属于其自身的计算资源和局部于自身行为控制的机制,能在无外界直接操纵的情况下,根据其内部状态和感知到的(外部)环境信息,决定和控制自身的行为。②交互性:能与其他Agent进行多种形式的交互,能有效地与其他Agent协同工作。③反应性:能感知所处的环境,并对相关事件做出适时反应。④主动性:能遵循承诺采取主动行动,表现出面向目标的行为。⑤推理和规划能力:Agent具有学习知识和经验及进行相关的推理和智能计算的能力。

多Agent系统(MAS)由多个自主或半自主的智能体组成,每个Agent或者履行自己的职责,或者与其他Agent通信获取信息互相协作完成整个问题的求解。与单Agent相比,MAS有如下特点:①社会性:Agent处于由多个Agent构成的社会环境中,通过某种Agent语言与其他Agent实施灵活多样的交互和通讯,实现与其他Agent的合作、协同、协商、竞争等。②自制性:在多Agent系统中一个Agent发出请求后,其他Agent只有同时具备提供此服务的能力与兴趣时才能接受动作委托,即一个Agent不能强制另一个Agent提供某种服务。③协作性:在多Agent系统中,具有不同目标的各个Agent必须相互协作、协同、协商对未完成问题的求解。

3仿真模型

3.1总体结构

道路交通系统包含很多相互关联的实体,主要有道路(分为路段和交叉口)、信号控制设施、车辆、驾驶员、行人等。这些实体有的具有一定程度的自制性和智能性,如驾驶员、行人等,有的是被动的受其他实体的影响,如路段等。多主体技术能够对交通系统中的各要素进行建模[4],如交叉口、信号灯、交通控制中心等,对这些要素进行简化,建立多主体概念模型。主要Agent有交通路网Agent、车辆Agent、信号灯Agent,其中交通路网Agent参考1979年Herman等[5]提出的二流模型(Two-fluidModel),该模型认为交通流有运行车辆与停止的车辆组成。

路网描述:交通路网是道路交通系统的基础设施,承载着车辆的运行。交通路网具有复杂的拓扑结构和集合特征,如果过于复杂则计算负载过重,故分为路段、路网、交叉口三次层管理,路网Agent负责存储维护整个交通路网的拓扑关系,为交通实体提供路网信息。路段Agent负责本路段的描述,交叉口Agent包含信号灯对象实现各入口车道交通流的时间分离,一个路段一个车道。

信号灯结构:信号灯是重要的交通控制设施,它实现对交叉口不同流向的车辆进行时间分离,减少车辆之间可能的冲突,改善交通安全,提高交叉口流通效率。信号灯控制从本质上看,是一个典型的复杂适应系统,国内外相关学者对信号灯控制已做出大量研究,也产生许多控制方案,但都有相应的局限性,也普遍存在着鲁棒性差、不易扩展、计算复杂等缺点[5],本模型从计算简单出发统一管理信号灯,一次初始化好时间间隔。

3.3初始化环境

环境是由37×37的网格组成的,通过设置sliders:grid-size-x=3,grid-size-y=4初始化一个4行3列的道路,其中两条道路交叉处有红色和绿色的瓦片分别代表红灯和绿灯,其中汽车数目通过设置slider:num-cars=54,点击Setup按钮即形成道路图。

3.4相关规则

3.4.1环境规则

初始时车辆数目(num-cars)一定要小于路(如图2中白色的表示道路)的数量,如果超出则提示警告信息。

如果无人参与此系统则设置current-auto?为off,有则设置on,并且通过current-phase选择一个交通灯为控制的交通灯。

此系统如果没有交通灯的参与则设置power?为off,反之则设置为on。

3.4.2运行规则

每一个时间步,车子按照当前速度向前行驶,如果当前速度小于限制速度(speed-limit)并且它们前方没有车子,那么它们加速(speed-up)行驶,如果前面的车辆速度小于自己的车速,那么当前车子要调整自己车速和前面的车速一致(slow-down),遇到红灯或者停着的车辆,当前车辆要停止。

4案例分析及结果

4.1案例一

目前,以城市交通为背景,研究诸如拥堵的形式、传播、消散、交通流在路网中的优化分布、车辆动态路径选择、特殊车辆控制等问题时,无信号灯交叉口车辆通行情况的准确性表征都是不可缺少的重要一环[6]。按照上述模型运行,当在没有信号灯也没有人参与的情况下(power?设置为off),道路为4行3列,车辆数目为140时的运行结果。

当在有信号灯没有人参与的情况下(power?设置为on),道路为4行3列,车辆数目为140时的运行结果。

4.2案例二

按照上述模型运行,当在道路为4行3列,车辆数目为54时我们得出停着的车辆数量柱状图如图5,车辆平均速度柱状图.

4.3分析及结果

由案例一可知,在有信号灯参与交通管理下交通却快速崩溃了,导致这种结果有多个因素,如信号灯控制不合理、车辆数目过大超过了道路的承载能力等。

有案例二可知,车辆平均速度与停着的车辆数量有一定的关系,正如二流模型中认为的路网宏观层面的平均行驶速度与路网上车辆的比重的幂运算成线性关系[7].

限于篇幅,文中只给了两个案例,有参数设置可以看出要得到高效的交通模拟数据需要大量的实验和多种组合,我们还可以得出有人参与交通管理的情况下交叉口的流通效率会提高,当有流动车辆进入交通道路或者离开交通道路会对上述结论产生何种影响等许多对实践有指导意义的结论。

结论

文中从基于多Agent建模的角度出发,借助Netlogo软件平台,利用了“TrafficGrid模型”,模拟了不同组合的参数对交通系统产生不同的影响,获取了车辆平均等待时间、停止的车辆等随时间变化的曲线,但是由于此模型比较简单,模拟的范围小、没有采用实际路网等因素,有待更好的改善。

多主体模型以并行的方式模拟非线性因果的社会系统,使人们更好地理解社会现象,发现现象背后的机制,从而做出预测和辅助决策。多主体建模目前还未形成成熟的体系,因而也没有一套完整而成形的理论,但可以预言,随着多主体思想的普及理论方法的完善,基于多主体建模和仿真会越来越多地应用于社会生活研究中。

参考文献:

[1]张江,李学伟.人工社会――基于Agent的社会学仿真[J].系统工程,2005(1):23-26.

[2]宜慧玉,张发.复杂系统仿真及应用[M].北京:清华大学出版社,2008.4.

[3]MinskyMTheSocietyofmind[M].NewYork:SimonandSchusterCompany,Inc.1986.

[4]CetinN,NagelK,RaneyBetal.Large-scalemulti-agenttransportationsimulations[J].ComputerPhysicecommunications,2002,147:559-564.

[5]方良松,余春艳.基于数字荷尔蒙模型的信号灯控制算法[D].福州大学(数学与计算机学院)硕士论文,2008.11.05.

[6]袁绍欣,赵祥模,安疑生.无信号交叉口车流通行状况的混杂Petri网模型[D].长安大学,陕西,西安,710064.

[7]HERMANR,PRIGOGINEI.A.Two-fluidApproachtoTownTraffic[J].Science,1979,204(4389):148151.

(下接第7页)

输入编辑,选择线文件中组成区边界的线文件;

(2)选择下拉菜单其它自动剪断线;然后再选择下拉菜单其它拓扑错误检查线拓扑错误检查,如果有错误会弹出对话框,提示线拓扑有错的线段,根据提示修改错误,然后选取下拉菜单“其它”线转换弧段并保存,形成一个区文件;

(3)在已打开的线文件中,选择下拉菜单“工作区”添加文件添加区文件(选择建立的区文件);然后再选择下拉菜单“其它”拓扑重建,拓扑重建后的图形如图5所示;

4点文件、线文件、区文件的叠加

MAPGIS生成的三类文件分别保存在三个文件中,而CAD是保存在同一个文件中的,所以MAPGIS中,要查看一幅完整的地图,需要文件的叠加,如先通过“图形处理”“输入编辑”打开已经建立的线文件,然后在下拉菜单“工作区”“添加文件”,选择要添加的点文件和区文件,当然也可以打开区文件添加点文件和线文件。这样就可以看到一幅完整的图形。

5结束语

随着“数字国土”工程在全国范围内的全面铺开及对已经建成的数据库的更新与维护,原有的CAD格式的地形图文件作为“数字国土”的主要数据来源,研究CAD格式文件转换成MAPGIS格式文件具有十分重要的使用价值和经济价值,本文通过对此的研究,总结出CAD格式文件玩换成MAPGIS格式文件的一般步骤和方法,希望对加快“数字中国”的进程起到一点帮助。

参考文献:

[1]朱恩利.地理信息系统基础及应用教程【M】.北京:机械工业出版社,2004.

[2]吴信才.MAPGIS地理信息系统【M】.北京:电子工业出版,2004.

[3]王有刚.基于MAPGIS下拓扑关系的自动建立【J】.测绘标准化,2004.

(下接第11页)

就越难分解。使用基于服务的名字会有所帮助,但是必须整个公司都使用标准化的、统一的、始终如一的名字。

2.2充分的冗余。

充分的冗余是指有一个或一系列复制好的服务器,能在发生故障的时候接管主要的故障设备。冗余系统应该可以作为备份服务器连续的运行,当主服务器发生故障时能自动连上线,或者只要少量的人工干预,就能接管提供服务的故障系统。

你选择的这类冗余是依赖于服务的。有些服务如网页服务器和计算区域,可以让自己很好的在克隆好的机器上运行。别的服务比如大数据库就不行,它们要求连接更牢固的崩溃恢复系统。你正在使用的用来提供服务的软件或许会告诉你,冗余是以一种有效的、被动的、从服务器的形式存在的,只有在主服务器发生故障并发出请求时,冗余系统才会响应。不管什么情况,冗余机制必须要确保数据同步并保持数据的完整。

如果冗余服务器连续的和主服务器同步运行,那么冗余服务器就可以用来分担正在正常运行的负荷并能提高性能。如果你使用这种方法,一定要注意不要让负荷超出性能不能接受的临界点,以防止某个服务器出现故障。在到达临界点之前要为现存系统增加更多的并行服务器。

冗余的另一个好处就是容易升级。可以进行滚动升级。每次有一台主机被断开、升级、测试然后重新开始服务。单一主机的故障不会停止整个服务,虽然可能会影响性能。如果你真的搞杂了一个升级那就关掉电源等你冷静下来再去修它。

参考文献:

智能交通研究篇6

关键词:交通堵塞;zigbee网络;智能交通灯

引言

目前道路交通系统上使用的交通灯均为固定值的减计数,固定时间间隔切换红、黄、绿灯。随着国家城镇化建设的推进,人们生活质量水平的提高,机动车已走进千家万户,而且数量呈上涨趋势。由此带来的直接问题便是交通堵塞,尤其是上下班高峰期和节假日进出城主要路口更为严重。文章就基于zigbee网络的智能交通灯系统如何减小高峰期十字路通堵塞问题展开研究。

1zigbee简介

zigbee为基于IEEE802.15.4标准的个域网协议,是一种低速近距离传输的无线网络协议。根据这个协议的规定其特点为:近距离传输、低复杂度、自组织、功耗较低、数据传输速率较低、节点容量高、响应延时短、性价比较高。zigbee协议自下而上分别为物理层(PHY)、媒体访问控制层(MAC)、传输层(TL)、网络层(NWK)、应用层(APL)等。zigbee网络系统中有且只有一个协调器,负责各个节点16位地址分配(自动分配),理论上可分配65536个节点,节点容量大。根据星状形、网状形和树状形网络组网更是千变万化。目前市面上的zigbee模块都集成了MCU(如8051单片机),可适用于自动控制和远程控制领域。

2系统硬件结构

此硬件系统主要分为数据采集,数据处理协调控制,数据控制应用三个部分。使用的芯片均为CC2530,其集成了一块增强型51单片机,可通过C语言对其直接编程。单个十字路口硬件系统的分布如图1所示。

2.1数据采集

如图1所示,十字路口四条道路上分布的网络节点zigbee_count1至zigbee_count4为数据采集部分。利用红外线计数器实时检测道路上车辆的通过情况,并将数据传送至8051单片机,通过单片机对单位时间T内通过车辆进行计数,最后通过无线传输将单位时间T内车辆通行计数值数据data1发送至数据处理协调控制部分。

2.2数据处理协调控制

如图1所示,zigbee_contrl为数据处理协调控制部分,也是整个网络中的协调器。其接收数据采集部分发送来的数据data1,通过8051单片机进行处理,并判断是否需要对交通灯的设置进行改变;若需要对交通灯设置进行改变,则将设置改变的数据data2通过无线传输发送至数据控制应用部分。

2.3数据控制应用

如图1所示,十字路通灯上分布的网络节点zigbee_led1至zigbee_led4为数据控制应用部分。其接收数据处理协调控制部分发来的数据data2,通过8051单片机进行处理,并对交通灯上红、绿灯的点亮时间进行设置,从而改变道路上车辆通行情况。

3系统组网方式

如图2所示,基于zigbee网络的智能交通灯系统采用的组网方式为星状形网络组网。其中zigbee_contrl为唯一一个协调器,zigbee_count1至zigbee_count4为4个数据采集节点,zigbee_led1至zigbee_led4为4个数据控制应用节点,共8个节点。并且每个节点都只是和协调器单向的数据传输,而不和其他节点进行通信。其中zigbee_count1至zigbee_count4只是单向的传输数据给zigbee_contrl,并不接收任何数据或向其它节点传输数据;zigbee_led1至zigbee_led4只是单向的接收zigbee_contrl传来的数据,并不接收其它节点传输的数据或对外传输任何数据。

4系统软件设计

整个网络系统的任务主要有数据采集、数据传输、数据处理判断、控制应用等。其主要功能软件实现设计思想为将图1中道路A和道路B上采集的单位时间T内通过车辆的数量进行相加,得到单位时间T内AB方向上通行车辆的总数countAB;将道路C和道路D上采集的单位时间T内通过车辆的数量进行相加,得到单位时间T内CD方向上通行车辆的总数countCD。通过对countAB和countCD的倍数关系N进行判断,若0.5≤N≤1.5则不做操作;若N1.5则将AB道路方向上的红灯显示时间缩短,绿灯显示时间延长,同时将CD道路方向上的红灯显示时间延长,绿灯显示时间缩短。系统主要功能软件实现程序流程图如图3所示。

软件程序的应用可以实时做到车流量较大的道路绿灯显示时间长,红灯显示时间短;车流量较小的道路红灯显示时间长,绿灯显示时间短。有效减轻车流量高峰时期的交通压力,防止十字路口车辆长龙的出现。