欢迎您访问大河网,请分享给你的朋友!

当前位置 : 首页 > 范文大全 > 工作范文

电工机械基础知识范例(3篇)

来源:网友 时间:2024-06-14 手机浏览

电工机械基础知识范文

能源动力产业既是国民经济的基础产业,又在各行各业中有普遍的应用,也是国家科技发展方向之一。能源动力领域人才教育的成败关系到国家的根本利益。随着我国市场经济的建立,社会需求和经济分配状态的变化,科技发展的趋势等,都对本专业的生源、就业等形成了挑战。本期我们着重向大家介绍能源与动力工程专业,以及与其相关的一些信息,以供考生参考。

李学文,太原市48中高中语文高级教师,太原市优秀教师,太原市优秀班主任,太原市十佳百优教师,太原市语文学科带头人,太原市名师培养对象。

专业介绍・能源与动力工程

【历史沿革】能源与动力工程,2012年前称为热能与动力工程。该专业涉及传统能源的利用、新能源的开发和如何更高效地利用能源。能源既包括水、煤、石油等传统能源,也包括核能、风能、生物能等新能源,以及未来将广泛应用的氢能。动力方面则包括内燃机、锅炉、航空发动机、制冷及相关测试技术。

【专业缘起】热能与动力工程专业形成于20世纪50年代。当时受苏联教育体制的影响,专业分割很细,比如热能与动力工程专业中就包括锅炉、电厂热能、内燃机、涡轮机、风机、压缩机、制冷、低温、供热通风与空调工程、冷冻与冷藏、水能动力工程、水电站动力装置、水电站动力设备、水能动力及其自动化、机电排灌工程、水能动力与提水工程以及工程热物理等几十个小专业。但随着能源动力科学技术的飞速发展和新问题的出现,浙江大学率先将热能与动力工程专业改成能源与环境系统工程专业,得到广大青年学子和社会各界的认同。不久后,清华大学也将热能与动力工程专业改成能源动力系统及自动化专业。

【培养目标】(1)以热能转换与利用系统为主的热能动力工程及控制方向(含能源环境工程、新能源开发和研究方向);(2)以内燃机及其驱动系统为主的热力发动机及汽车工程,船舶动力方向;(3)以电能转换为机械功为主的流体机械与制冷低温工程方向;(4)以机械功转换为电能为主的火力火电和水利水电动力工程方向。

【培养要求】本专业学生应具备宽广的自然科学、人文和社会科学知识,热学、力学、电学、机械、自动控制、系统工程等学科的理论基础,热能动力工程专业知识和实践能力,掌握计算机应用与自动控制技术方面的知识。

【毕业生应获得以下的知识和能力】(1)具有较扎实的自然科学基础,较好的人文、艺术和社会科学基础及正确运用本国语言、文字的表达能力;(2)较系统地掌握本专业领域宽广的技术理论基础知识,主要包括工程力学、机械学、工程热物理、流体力学、电工与电子学、控制理论、市场经济及企业管理等基础知识;(3)获得本专业领域的工程实践训练,具有较强的计算机和外语应用能力;(4)具有本专业领域内某个专业方向所必要的专业知识,了解其科学前沿及发展趋势;(5)具有较强的自学能力、创新意识和较高的综合素质。

【主干学科】动力工程与工程热物理、机械工程、流体力学。

【主要课程】工程力学、机械设计基础、机械制图、电工与电子技术、工程热力学、流体力学、传热学、控制理论、测试技术、燃烧学等。

【主要实践性教学环节】包括军训、金工、电工、电子实习、认识实习、生产实习、社会实践、课程设计、毕业设计(论文)等,一般应安排40周以上。

【主要专业实验】传热学实验、工程热力学实验、动力工程测试技术实验、流体力学实验等。

西安交通大学能源与动力工程学院的前身为创建于1921年的机械工程科动力组,1952年全国大规模院系调整时,脱离机械工程系变为动力机械系,1956年随学校主体迁往西安,是当时交通大学整体西迁的科系之一。

学院师资力量雄厚,荟萃了国内外能源与动力工程、工程热物理、核能科学与工程等学科领域享有盛誉的教授、专家和学者。现有教职工258名,其中教师172人,实验技术人员62人,行政管理人员24人。其中中国科学院院士2名、中国工程院院士1名、部级教学名师2名、部级有突出贡献专家8名,教授75名、副教授59名。教师队伍士学位获得者占73.3%。

学院拥有动力工程及工程热物理、核科学与技术等2个一级学科博士点和博士后流动站。拥有包括工程热物理、热能工程、动力机械及工程、流体机械及工程、制冷及低温工程、化工过程机械、核科学与工程、核技术与应用、化学工程等在内的9个二级学科博士点以及2003年增设的能源环境工程、后续能源与能源新技术、航空动力与空间环境工程3个博士备案点,其中动力工程及工程热物理一级学科,热能工程、流体机械及工程、动力机械及工程、制冷及低温工程、工程热物理、核能科学与工程6个全国重点学科,热能工程、流体机械及工程2个二级学科是我国最早批准的首批全国重点学科。下设热能工程系、制冷及低温工程系、流体机械及工程系、动力机械及工程系、化工过程机械系、核科学与技术系、化学工程系、环境工程系等8个系和热与流体中心、教学实验中心。完成了大量国家和省部级科研项目以及与企业的合作项目,作为首席科学家和主持单位主持国家973重大项目2项,并与多个国家与地区的研究机构和企业建立了合作关系,承担了与美、英、日、韩、希腊、香港等国家和地区的多项合作项目。

在有史以来的多次部级评估中,该院热能工程、流体机械及工程2个二级学科的评分均始终名列全国第一,动力工程及工程热物理一级学科博士点的评分也始终在全国名列前茅。

有问必答・关于报考

问题1:能源与动力工程专业的学生应有怎样的知识和能力?

(1)具有较扎实的自然科学基础,熟练掌握高等数学、工程数学、大学物理、工程化学等基础性课程的基本理论和应用方法;具有较好的人文、艺术和社会科学基础及正确运用本国语言、文字的表达能力。

(2)掌握一门外国语,具有较好的听、说、读、写能力,能较顺利地阅读本专业的外文书籍和资料。若外语为英语应达到国家四级以上水平(含四级)。

(3)系统地掌握本专业必需的技术基础理论,主要包括力学理论(理论力学、材料力学、流体力学),热学理论(热力学、传热学等),机械设计基本理论,电工与电子基本理论,自动控制理论,能源动力工程基础理论等。

(4)熟悉本专业领域内1~2个专业方向或有关方面的专业知识,了解其学科前沿和发展趋势。

(5)具有本专业必需的制图、计算、测试、调研、查阅文献和基本工艺、操作、运行等基本技能。

(6)具有一定的计算机知识和较强的计算机应用能力,较熟练使用计算机工具,解决工程中的有关问题。

(7)具有较强的自学能力、分析能力和创新意识。

问题2:能源与动力工程专业的学生就业方向?

根据专业方向不同,毕业生可在大型企业、相关公司以及相关的研究所、设计院、高等院校和管理部门从事热能工程、动力工程、制冷工程方面的研究与设计、产品开发、制造、试验、管理、教学。或发电厂、内燃机厂、汽车制造厂、物流调控、锅炉厂、大型机械厂、造船厂、空调厂、制冷设备厂、暖通工程等领域工作。也可从事能源与动力工程及相关方面的研究、教学、开发、制造、安装、检修、策划、管理和营销等工作。还可在本专业或其他相关专业继续深造,攻读硕士、博士学位。

问题3:能源与动力工程专业人才培养目标和培养规格,专业方向的不同有差异么?

根据专业人才培养目标和培养规格,因专业方向的不同而有所差别。

(1)热能动力及控制工程方向(含能源环境工程方向)

主要掌握热能与动力测试技术、锅炉原理、汽轮机原理、燃烧污染与环境、动力机械设计、热力发电厂、热工自动控制、传热传质数值计算、流体机械等知识。

(2)热力发动机及汽车工程方向

掌握内燃机(或透平机)原理、结构、设计、测试、燃料和燃烧,热力发动机排放与环境工程,能源工程概论,内燃机电子控制,热力发动机传热和热负荷,汽车工程概论等方面的知识。

(3)制冷低温工程与流体机械方向

掌握制冷、低温原理、人工环境自动化、暖通空调系统、低温技术学、热工过程自动化、流体机械原理、流体机械系统仿真与控制等方面的知识。掌握该方向所涉及的制冷空调系统、低温系统,制冷空调与低温各种设备和装置,各种轴流式、离心式压缩机和各种容积式压缩机的基本理论和知识。

(4)水利水电动力工程方向

掌握水轮机、水轮机安装检修与运行、水力机组辅助设备、水轮机调节、现代控制理论、发电厂自动化、电机学、发电厂电气设备、继电保护原理等方面的知识,以及水电厂计算机监控和水电厂现代测试技术方面的知识。

问题4:能源与动力工程专业的学生需要系统掌握哪些知识?

掌握高等数学、大学物理、工程化学、生命科学、环境科学等方面的知识。

掌握工程制图、工程数学、理论力学、材料力学、机械设计基础、金属工艺学、电工学、电子技术基础、工程流体力学、工程热力学、传热学、计算机原理与应用、自动控制原理等方面的知识(对水利水电动力工程方向,工程热力学、传热学知识要求可适当降低)。

问题5:能源与动力工程中的能源动力系统及自动化专业主要研究什么?

研究将煤炭、石油、天然气等一次能源转化为电力、热能等二次能源的生产和利用过程;研究人工环境、制冷空调、低温生物医学等领域的科学技术问题;还研究风能、太阳能、生物质能等新能源的开发利用。能源转换与利用过程排放的有害物质将造成环境污染,因此能源的生产必须高效、清洁。能源与环境系统专业不仅对自动化控制十分依赖,而且是一个复杂系统工程,集合了热科学、力学、材料科学、机械制造、环境科学、计算机科学、自动控制科学、系统工程科学等高新科学技术。能源与环境系统工程专业具有很宽的专业知识面,是一个能源、环境与控制三大学科交叉的复合型专业。

【意林散文】

羞涩

文/刘心武

在我的艺术世界里,羞涩几乎无处不在。

我羞涩地画水彩和油画,不仅是因为我没受过扎实的基本功训练,也不仅是因为我害怕别人对我的画作鄙薄,而主要是因为我对色彩、明暗、笔触、韵味等充满了虔诚。对于我来说,那相当于宗教信徒走进了教堂。

我更常常羞涩地面对着大自然。

更具体地说,是常常羞涩地面对着大自然中最琐屑的细部。

电工机械基础知识范文篇2

关键词:中国制造2025机械电子工程专业机器人实践教学平台能力培养

中图分类号:G642文献标识码:A文章编号:1674-098X(2017)01(c)-0160-04

实践教学是高校机械电子工程专业不可或缺的重要教学环节,其在培养学生创新思维和实践动手能力方面具有重要意义。机器人教学平台是高校开展实践教学,培养及提高学生创新能力的最佳平台。当前,我国正处于“中国制造2025”战略发展时期,高校机械电子工程专业作为制造业人才培养的主体机构,积极开展机器人实践教学平台建设,正是响应国家智能制造战略“以人为本”的基本方针,充分把握智能制造业人才培养市场机会,顺应高校实践教学发展趋势,提高学生实践和创新能力,适应智能制造发展对高素质机械电子工程人才需求的重要工作。

1高校机械电子工程专业机器人实践教学平台建设的必要性

1.1高校助力“中国制造2025”的重要措施

2015年5月8日国务院公布的为强化高端制造业的国家战略《中国制造2025》明确提出“以人为本”的基本方针,强调“坚持把人才作为建设制造强国的根本”,“加快培养制造业发展急需的专业技术人才”,“以高层次、急需紧缺专业技术人才和创新型人才为重点,实施专业技术人才知识更新工程和先进制造卓越工程师培养计划,在高等学校建设一批工程创新训练中心,打造高素质专业技术人才队伍”[1]。高校机械电子工程专业是培养制造业人才的主体。机器人教学平台是高校进行工程训练,开展实践教学,培养提高学生创新能力的最佳平台[2]。因此,高校机械电子工程专业应依托机器人实践教学平台,加强新型制造业人才培养力度,提高制造业人才整体素质,以响应制造业强国战略、助力“中国制造2025”。

1.2把握智能制造人才培养市场机会的客观要求

高校人才培养要关注新问题,迎接新挑战[3]。当前,我国正处于传统制造向智能制造的升级转变阶段,智能制造也是“中国制造2025”战略发展的主攻方向。要实施“中国制造2025”发展战略,达到中国制造强国的发展目标,必然需要大量具有以机器人和数控机床为代表的自动化、智能化装备专业背景知识、具备创新设计能力和自动化、智能化产品研发和制造能力的高素质制造业人才[4]。然而,目前我国制造业人才中高级技工人数仅占5%,远低于欧美制造业强国35%~40%的平均水平,而且具有大学本科学历的制造业工人的数量也甚少[5]。实践教学是高校人才培养的重要环节,而机器人平台是开展工程实践训练,培养学生创新思维和实践能力的最佳平台[2]。因此,高校应把握新形势下的人才需求市场机会,积极建设机器人实践教学平台,提升高校机械电子工程专业人才培养质量,增强学生综合能力,适应智能制造发展对高素质制造人才的需要。

1.3机械电子工程专业人才培养中实践教学的发展趋势

机器人是典型的机电一体化系统,它融合了机械、电子、单片机软硬件、传感器、通讯和自动控制技术等众多先进技术,涉及单片机、C/C++语言、传感器、机械设计、自动控制技术、无线通讯等专业课程知识内容,被称为“当代最高意义上的自动化”。机器人实践教学一直是个热点,其在培养学生实践创新能力方面具有重要作用。早在1970年,麻省理工学院(MIT)机械电子工程系的H.H.Richardson教授就采用了《设计课程导论》课程,并将其改造成一项设计竞赛,成功开创了“工程导向式”培养模式的先河,目前它已经成为全世界众多遥控机器竞赛和机器人比赛的典范[6]。此外,美国、日本、德国、法国和韩国的高校都开设了机器人课程。其中,美国高校不仅开设了诸如《机器人学》《机器人学导论》这样的机器人相关理论课程,它们还将机器人作为课程的学习平台以提高学生的工程实践能力和创新能力。近年来在国内,清华大学、北京航空航天大学、哈尔滨工业大学、西安交通大学等传统工科优势高校也相继以教学机器人或者改造过的工业机器人为载体,开展了工程实践课程或者相关活动,并取得了一些成效。依托机器人平台,已成为高校实践教学发展的大趋势,高校要顺应这一趋势,大力开展机器人实践教学平台建设,提高高校教学质量。

1.4有限实验条件下的有效人才培养措施

实践教学活动是工科院校人才培养的重要组成部分,但是很多院校由于实验经费投入不足、实验人员数量不足、实践教学活动时间少等原因,导致学生的培养质量下降。选择通用的实践教学平台、构建合理的课程体系是实现“有限实验条件下的有效人才培养”的重要措施。具有高度综合和学科交叉性质的机器人实践教学平台,同时具备机械、电子、自动化、计算机等学科的实践教学功能。构建高校机械专业机器人实践教学平台是解决工科院校在有限实验条件下,进行人才培养的有效措施。

2机械电子工程专业机器人实践教学平台建设的目标和基本思路

2.1建设目标

机械电子工程专业机器人实践教学平台旨在以机械臂教学平台、各种传感器模块、开放式控制器平台、轮式移动机器人教学平台、机电一体化综合应用等几大机器人教学平台为载体,通过分年级、分层次的模块化能力培养模式,实现专业课程体系的理知识和机器人实践教学平台的有效衔接,从而达到机械电子工程专业的培养目标,即:培养掌握基本数学和自然科学知识;具备坚实的机械学科的基本理论和机械电子工程专业知识;具有从事机械电子工程行业所需的数值计算与分析能力、机构设计与分析能力、控制系统设计与分析能力、工程实践综合运用能力;胜任机械电子工程领域的研究开发、设计制造、技术经济管理等岗位的智能型制造人才。

2.2基本思路

结合智能制造人才的内涵,依据解决工程问题的能力需求,我们认为智能制造时代机械电子工程专业大学生应具备4类基本能力,即数值计算与分析能力、机构设计与分析能力、控制系统设计与分析能力、工程实践综合运用能力。对应这4个能力模块,将机械电子工程专业机器人实践教学划分为4个层次,即:关注数值计算与分析能力培养的基础实验、关注机械设计与分析能力培养的拓展实验、关注控制系统设计与分析能力培养的提高实验、关注工程实践综合运用能力培养的综合实验。基本建设思路如图1所示。

2.2.1基础实验

基础实验的适用对象为大一学生,旨在帮助大一学生了解和掌握工科专业基础知识,强化数值计算与分析能力的培养。实验内容涉及的课程主要包括《Matlab程序设计与应用》《工程数学》《工程力学》。实验项目包括:(1)基于“机械臂教学平台”和“轮式移动机器人教学平台”,运用《工程数学》的基本数学理论知识,结合Matlab的Robot工具箱进行机器人运动学分析,使学生深入理解数学的基本概念和基本方法,掌握微积分运算、矩阵运算、线性方程组运算的方法,培养学生使用数学工具、建立数学模型解决实际问题的意识与能力,并培养大学生运用数学知识解决工程实践的能力。(2)以《工程力学》基本理论为基础,以“机械臂教学平台”和“轮式移动机器人教学平台”的传动轴设计为研究对象,利用Matlab进行建模、仿真,根据运算结果输出传动轴的弯矩图、扭矩图及合成弯矩图,对机器人传动轴进行校核与优化设计。(3)以机器人教学平台为基础,在《工程数学》《工程力学》等课程的学习过程中,借助Matlab软件强大的计算、仿真和绘图功能,激发学生的学习兴趣,培养学生独立思考问题的能力,在奠定工程理论基础的同时达到培养学生数值计算与分析能力的目的。

2.2.2拓展实验

拓展实验的适用对象为大二学生,旨在帮助大二学生了解和掌握机械电子工程专业的相关知识,强化机构设计与分析能力的培养。实验内容涉及的机械专业基础课程有《金属工艺学》《工程制图》《机械原理》《机械设计》《互换性与测量技术》《基于SolidWorks的机械CAD/CAE》等。其中,学生通过《基于SolidWorks的机械CAD/CAE》课程的学习,要能使用SolidWorks软件进行机构设计与分析。因为,SolidWorks软件以其强大的工程图设计、零件建模、装配体建模、钣金设计、模具设计、机构运动仿真、机构力学分析、机构优化、计算液体力学分析、虚拟样机等功能,目前在航空航天、机车、食品、机械、国防、交通等领域得到广泛应用。在国外,包括麻省理工学院(MIT)、斯坦福大学等在内的著名大学都已经把SolidWorks列为制造专业的必修课。在国内,清华大学、华中科技大学、哈尔滨工业大学、北京航空航天大学、大连理工大学、北京理工大学、武汉理工大学等一批具有机械电子工程优势专业的高校也都在应用SolidWorks开展实践教学。实验项目包括:基于“机械臂教学平台”和“轮式移动机器人教学平台”,利用SolidWorks软件进行机器人关键零部件的3D设计、机构运动学仿真、机构优化设计,在具备一定的设计基础后进行新型机器人运动机构的设计与开发,最终达到机构设计与分析能力培养的目的。

2.2.3提高实验

提高实验的适用对象为大三学生,旨在帮助大三学生了解和掌握电气与控制相关专业知识,强化控制系统设计与分析能力培养。提高实验涉及的课程为电气与控制专I课程,不同课程实现不同能力与技能的培养。如通过学习《电路基础》《电工电子》课程,要求学生掌握基本的电路设计方法;通过学习《C/C++语言程序设计》《单片机应用技术》《微机原理与接口技术》课程,要求学生掌握控制系统设计的方法;通过学习《机械工程控制基础》《传感器与测试技术》《机械故障诊断》《Labview虚拟仪器技术》课程,要求学生掌握基本的控制理论;通过学习《PLC原理与应用》《液压与气压传动技术》《机电传动控制》课程,要求学生掌握常用执行机构的工作原理及应用方法。该实验模块的内容包括:(1)基于“开放式控制器平台”,利用单片机、工控机、PC机、PLC等控制器实现电机、液压缸、液压马达、气压缸等常用执行器的运动控制,掌握开放式运动控制器的应用与开发方法;(2)基于“各种传感器模块”平台,利用Labview软件,掌握各类传感器的使用及信号采集与处理方法;(3)基于“开放式控制器平台”“各类传感器模块”“机械臂教学平台”和“轮式移动机器人教学平台”,根据控制理论,通过设计C/C++控制程序,实现机器人的运动控制,并通过Matlab的Simulation工具箱对控制系统进行分析。

2.2.4综合实验

综合实验的适用对象为大四学生,旨在帮助大四学生了解和掌握机械电子工程的专业知识,强化工程实践综合运用能力。综合实验要求大四学生通过《机器人技术》《数控加工技术》《工业设计》《工业系统工程》《自动化产品设计》和《自动化生产线设计》等课程的学习,基于各类机器人教学平台,以课程设计、毕业设计的形式,进行以工程应用为导向的各类课题的研究。以工程应用为导向的相关的课题包括:传感器类课题(机器人路径规划、移动机器人精确定位研究、传感器信号采集及处理)、运动控制类课题(基于PID控制的机器人轨迹跟踪、移动机器人控制方法研究、开放式机器人控制器研究)、机器人系统类课题(新型机器人系统开发、机器人寻迹、机器人避障、机器人灭火)、图像处理类课题(视觉伺服控制、机器人视觉信息处理、运动目标跟踪)、人机交互类课题(语音识别技术研究、手势识别技术研究)、工业现场类课题(自动包装生产线研究、自动化仓库研究)。通过工程应用前景明确的课题的研究,实现机电一体化产品开发能力的培养。

3机械电子工程专业机器人实践教学平台的实践效果

河南工业大学机电工程学院以现有机械电子工程训练中心为基础,在学校实验室建设专项经费支持下,规划建设了机械电子工程专业机器人实践教学平台。长期的实践教学表明,机器人实践教学平台对促进学生能力培养,激发学生的学习兴趣,提高人才培养质量有重要作用。

3.1培养了学生从事机械电子工程专业所需的能力

专业能力培养是机械电子工程专业的重要教学目标。通过以能力培养为导向的专业课程体系群学习后,学生掌握了工科专业基础知识和机械电子工程专业知识;通过基于机器人教学平台的实践教学环节的培养后,学生具备了从事机械电子工程行业所需的数值计算与分析能力、机构设计与分析能力、控制系统设计与分析能力和工程实践综合运用能力。其中,在工程实践综合运用能力培养过程中,基于机器人教学平台,运用工程软件解决复杂工程问题的培养效果尤为明显。如运用Matlab进行工程计算、运用MatlabSimulation进行控制系统仿真、运用SolidWorks进行机构3D设计、运用SolidWorksSimulation进行机构力学特性分析与仿真、运用SolidWorksFlowSimulation进行流体力学分析、运用Labview进行控制系统构建、信号采集与处理等,极大地提高了学生解决复杂工程问题的能力。

3.2激发了学生的学习兴趣,提高了人才培养质量

趣味性是学习的原动力,基于机器人教学平台的实验教学模式以工程应用能力为培养目标,以工程问题为研究对象,有效地提高课程的趣味性,增强了学生的学习主动性。通过组织小组对抗赛、校内机器人大赛、校间机器人大赛,充分调动了学生学习的积极性、主动性;通过组织参加挑战杯、机械设计创新大赛,提高了学生的创新思维能力,实现了工程应用能力培养的目的,在提高人才培养质量的同时,大大提高了大学毕业生的首任职业胜任率。

4结语

针对机械电子工程行业对数值计算与分析能力、机构设计与分析能力、控制系统设计与分析能力和工程实践综合运用能力的需求,构建基于机械臂、传感器模块、开放式控制器平台、移动机器人和机电一体化系统的机械电子工程机器人实践教学平台,建立包括基础实验、拓展实验、提高实验和综合实验的分层次实验体系。实践教学效果表明,机器人实践教学平台对于培养大学生综合能力,激发学习兴趣,提高培养质量有重要作用。

参考文献

[1]于志晶,刘海,岳金凤,等.中国制造“2025”与技术技能人才培养[J].职业技术教育,2015(21):10-24.

[2]S文恺,陈虹.机器人创新性教学平台的实践与探索[J].今日科苑,2009(5):131-132.

[3]钟秉林.大学人才培养要研究新问题,应对新挑战[J].中国大学教学,2013(7):1-2.

[4]周济.智能制造――“中国制造2025”的主攻方向[J].中国机械工程,2015(17):2273-2284.

电工机械基础知识范文

【关键词】机械;本科大类招生;分类培养;途径与方法

一、机械本科专业实行大类招生、分类培养的意义

机械工业是国家经济建设、社会发展的支柱和基础产业,与机械工业紧密相关的机械工程学科是高等教育的支柱和基础学科之一,从国民经济可持续发展的战略高度出发,机械类人才的培养在整个教育中占有极其重要的地位。

近年来,不少高校致力于探索机械类专业理论和实践教学内容体系的改革,取得了一些成绩。我校机械本科大类招生、分类培养,是指确定机械设计制造及其自动化专业、过程装备与控制工程专业、材料成型、农业机械化及其自动化四个本科专业按机械大类招生,分专业方向毕业,本科,学制四年,前两年按机械工程学科中各专业培养规格的共同要求,开设公共基础课、数学基础课、机械大类基础课等20多门“核心课”;后两年为专业培养阶段,按照“立足市场需要,考虑个人志愿,组织综合平衡”的原则,分专业进行专业基础课和专业课的学习,并完成所选专业的毕业设计(论文)。

(一)我校机械本科专业发展方向分析

当前世界科技急速发展带来了科技高度分化而又高度交叉融合,机械专业不但已同信息技术密不可分,而且也已经同生物技术发生联系,许多崭新的交叉领域不断出现。为适应可持续发展与知识经济的要求,我校机械专业的发展方向是要求学生除了在机械工程及微电子技术两方面具有坚实的理论基础和基本知识外,还应在计算机、机械设计、控制的自动化、机电液气综合应用的生产系统、英语、企业管理等方面具有相应的知识和能力,并对先进制造技术如CIMS、CAD/CAM一体化等有概括的了解。

(二)国内外同类专业人才培养计划分析

国外大学中与机械专业相近的专业主要有机械工程专业(MechanicalEngineering),一般为三年制。如英国的Cranfield大学,一年级的课程主要有数学、制图及设计与制造、计算机应用、材料、力学、热力学及热传递、流体力学、应变分析及结构、电子学、电路基本理论、电子技术、工程管理等。二年级的课程除进一步开设数学、流体力学、热力学及热传递和工程管理外,其它主要课程有计算机在工程中的应用、工程力学、应变分析及材料、结构学和设计等。三年级在继续开设设计课的同时只开一门流体热力学,然后开始毕业设计。在学习的过程中,学生还可以根据需要或兴趣选修应用流体力学、数学模型、可靠性原理、实验学、材料工程以及根据学校自己的特点开设的各类型机械课程如气轮机等。国外其他大学的机械工程专业的课程设置尽管各有特点,但总的来说都是十分注重宽阔的基础课和专业基础课的学习,注重实验、实习等方面的动手能力的培养,开设管理方面的课程。

二、我校机械本科专业大类招生、分类培养的发展趋势

我校机械学科本科专业实行大类招生,分类培养的人才培养目标,其发展趋势主要体现在以下三个方面。

(一)加强基础,拓宽专业面向

只为机械设计、制造、维护培养专门人才的传统目标显然已被打破。我校机械设计制造及其自动化本科专业首先应在课程设置上加强基础并拓宽专业的服务面向。这意味着学生在四年的学习中,其专业面向不仅要适应与机械学科密切相关的行业,也要适应机械学科的边缘或交叉行业,甚至跨行业的工作岗位。精、钻或特殊的专业知识应依靠继续教育。加强基础的内涵不仅包括机械学科的相关基础理论和专门知识,还应包括系统工程学科、人文社会学科和现代工具类知识。

(二)提高素质,注重能力培养

提高素质、注重能力培养是当前高校对本科教育的普遍要求,我校机械学科本科专业人才培养目标应全面贯彻这一思想。其一,要充分重视机械学科以外的人文社会学科知识的传授和培养,重视学生的课外科技活动和社会实践活动。其二,在传授专业基础理论和基本技能的同时,必须努力在教学中挖掘提高业务素质的成份,挖掘知识创新的成分,对学生来说,某一知识和具体技能,不用则忘,唯有素质的提高和创新意识的增强能享用终身。其三,要创造一切有利条件,加强学生的工程综合实践,通过实验、实习、设计、制作、研究和各种调研活动,提高学生分析解决问题的能力和创新能力。

(三)以人为本,强调个性发挥

人的个性特征、先天素质和从业意向是有很大差异的,以人为本,强调个性发挥,允许学生根据自己的实际情况选择发展方向是学校教学改革的重要内容。事实上,对机械设计制造及其自动化专业毕业生而言,社会需求也是多种多样的。为此,要允许学生有实施多种选择的可能性。我校近几年所实施的机械学科本科专业人才培养计划,无论是自然科学基础、人文社会科学基础,还是专业技术基础和专业课,都留有相当的选择余地。此外,有部分学生毕业时还拿到了其他专业的辅修证书或第二学士学位证书。

转贴于

三、我校机械本科专业大类招生、分类培养的途径与方法

机械类人才培养应遵循下列原则:(1)德育渗透、全程育人,增强学科的德育渗透性;(2)加强基础、拓宽专业,增强学科的社会适应性;(3)压缩课时、强调自学,增强学科的教育载体性;(4)注重实践、突出工程、加强学科的工程系统性。根据这个原则,我校对机械本科专业大类招生、分类培养方案进行了有益的探索。

(一)设计知识模块的整体框架

根据“加强基础、拓宽专业、培养能力、提高素质”和培养“高素质专门人才”的办学理念,我校确定了4年总学时不超过2500、实践性教学环节不低于40周的基本框架,规定总学时中:公共基础课组占40%;专业技术基础课组占30%;专业方向课组占10%;其余20%为任选课组合,由学生根据自己的兴趣、特长、爱好和就业意向在全校跨专业、跨院系选课。在保证基础知识厚度的同时,还使专业课组按削减深度、拓展广度的原则进行整体改造。

(二)优化自然科学基础模块

在不超过总学时和模块控制比例的基础上,第一,强调数学和化学基础,新增“复变函数”、“积分变换”、“计算数学”、“大学化学”和“化学实验”;第二,加强力学基础,新增“热工学”、“流体力学”、“结构力学”和“有限元法基础及应用”等课程;第三,确立计算机及电子信息类课程的必选地位,增设了“机械电子学”、“微机原理及接口技术”、“CAD”、“CAM”、“数字化技术原理及方法”、“计算机软件工程”、“数控技术”等课程;第四,进一步强化了自动控制类课程,如“机械电气控制及自动化”、“机电液控制系统”、“气液传动与控制”、“机械控制工程基础”、“自动化制造系统”等;第五,在各门课程中,强调计算机应用如计算机辅助绘图和计算机辅助工艺设计等。

(三)改革专业课程体系

在新的专业课结构体系中设计7个专业方向课组合,我校学生学完公共及专业基础课程后,进入第七学期即可在7个方向课组中任选一组学习,每个方向课组约10个学分(180学时左右)。其中有:(1)现代机械设计理论及方法;(2)现代机械制造技术;(3)机电一体化;(4)制造信息化;(5)工业机器人;(6)石油机械技术;(7)农业机械化技术。这7个方向课组的背后都有较强的教学科研队伍和科研实习基地作为依托。

(四)整合实践教学环节

为了加强实践环节并增强其实际可操作性,我校对专业实践教学环节进行如下四个方面的调整:(1)将原机械原理、机械设计和机械制图课程中的实验取消,重新构建相对独立的“机械基础实验”课程。(2)将原机械原理、机械设计中的课程设计进行整合,构建综合性的“机械基础课程设计”。(3)新开出三个实践环节,即机械制造技术课程设计(CAPP)、微机原理及接口技术课程设计和数控加工综合实践。在数控加工环节,要求学生3~5人为1组,用1周时间针对一个零件在计算机上编制加工程序,然后通过网络将程序传送到数控加工中心加工成零件。(4)金工实习由6周减至4周。(5)开设工程综合实践环节。参考文献

[1]段洁利,张淑娟,扬洲.对机制专业本科人才培养计划的思考与分析[J].山西农业大学学报(社会科学版),2006,(3).

[2]李伟.提高机械类本科应用型人才创新能力的思考与分析[J].中国冶金教育,2004,(2).

[3]柯俊,孙祖庆,翁海珊.面向21世纪高等工程教育改革的探索[J].机械职业教育,2002,(2).