含氟化物污水处理方法范例(3篇)
含氟化物污水处理方法范文
关键词:含氟废水;处理工艺;研究进展;化学混凝沉淀法
中图分类号:O652.61;文献标识码:A;文章编号:
1氟元素污染
氟是人体必需的微量元素之一,适量的氟有益于人力健康,但是含量过低或过多都会危害健康,特别是过多会引起氟中毒。人们日常饮用水含氟量一般控制在0.4~0.6mg/L,长期饮用氟离子浓度大于1mg/L水对人体不利,严重的会引起氟斑牙与氟骨症以及其他一些疾病,甚至会诱发肿瘤的发生,严重威胁人类健康。
现代工业的发展的同时,排放了大量的高浓度含氟工业废水,这些废水一般含有氟离子(F-)形态的氟。而很多企业尚无完善的处理设施来对这些废水加以处理,排放的废水中氟含量超过国家排放标准,氟离子浓度应超过了10mg/L,严重地污染着人类赖以生存的环境的同时给人类的健康造成很多威胁。因此,高浓度含氟废水处理研究成为了当前环保及卫生领域重要的研究课题。
2含氟废水处理的基本工艺研究
当前,国内外高浓度含氟废水的处理方法有数种,常见的有吸附法和沉淀法两种。其中沉淀法主要应用于工业含氟废水的处理,吸附法主要用于饮用水的处理。另外还有冷冻法、离子交换法、超滤除氟法、电凝聚法、电渗析、反渗透技术等方法。
2.1沉淀法
沉淀法是高浓度含氟废水处理应用较为广泛的方法之一,是通过加药剂或其它药物形成氟化物沉淀或絮凝沉淀,通过固体的分离达到去除的目的,药剂、反应条件和固液分离的效果决定了沉淀法的处理效率。
2.1.1化学沉淀法
化学沉淀法主要应用于高浓度含氟废水处理,采用较多的是钙盐沉淀法,即石灰沉淀法,通过向废水中投加钙盐等化学药品,使钙离子与氟离子反应生成CaF2沉淀,来实现除去使废水中的F-的目的。该工艺简单方便,费用低,但是存在一些不足。处理后的废水中氟含量达15mg/L后,再加石灰水,很难形成沉淀物,因此该方法一般适合于高浓度含氟废水的一级处理或预处理,很难达到国标一级标准。另外,产生的CaF2的沉淀包裹在Ca(OH)2颗粒的表面,因此不能被充分利用,造成浪费。
近年来,一些专业人士对工艺进行了大量的研究,在加钙盐的基础上,加上铝盐、镁盐、磷酸盐等,除氟效果增加的同时提高了利用率。在加石灰的基础上加入镁盐,通过石灰与含镁盐的水溶液作用,生成氢氧化镁沉淀实现对氟化物的吸附。在废水中加入硫酸铝、明矾等铝盐,与碳酸盐反应生成氢氧化铝,在混凝过程中氢氧化铝与氟离子发生反应生产氟铝络合物,生产的氟铝络合物被氢氧化铝矾花吸附而产生沉淀。另外,可以在水中加入氯化钙、复合铁盐作混凝剂和高分子PAM作絮凝剂,在不增加现有设备处理设备的基础上,提高了废水处理效果。
2.1.2混凝沉淀法
混凝沉淀法是通过在水中加入铁盐和铝盐两大类混凝剂,在水中形成带正电的胶粒,胶粒能够吸附水中的F-而相互并聚为絮状物沉淀,以达到除氟的目的。混凝沉淀法一般只适用于低氟的废水处理,一般通过与中和沉淀法配合使用,实现对高氟废水的处理。由于除氟效果受搅拌条件、沉降时间等因素的影响,因此出水水质会不够稳定。
铁盐类混凝剂一般需要配合Ca(OH)2使用,才能实现高效率,并且处理后的废水需要用酸中和后才能排放,因此工艺比较复杂。铝盐除氟法是在水中加入硫酸铝、聚合氯化铝、聚合硫酸铝等的铝盐混凝剂,利用Al3+与F-的络合以及铝盐水解后生产的A1(OH)3矾花,去除废水中的F-,效果不错。由于药剂投加量少、成本低,并且一次处理后出水即可达到国家排放标准,因此铝盐混凝沉降法在工业废水处理中应用较为广泛。
2.2吸附法
吸附法是将装有活性氧化铝、聚合铝盐、褐煤吸附剂、功能纤维吸附剂、活性炭等吸附剂的设备放入工业废水中,使氟离子通过与固体介质进行特殊或常规的离子交换或者化学反应,最终吸附在吸附剂上而被除去,吸附剂还可通过再生恢复交换能力。为了保证处理效果,废水的pH值不宜过高,一般控制在5左右,另外吸附剂的吸附温要加以控制,不能太高。该方法一般用于低浓度含氟废水的处理,效果十分显著。由于成本较低,而且除氟效果较好,是含氟废水处理的重要方法。
2.3其他方法
除了上述两种比较常用的方法外,还有一些方法虽然没有被普遍应用,但是已经成为行业人士研究的对象,在一些特种含氟废水处理中取得较好的效果。其中包括离子交换法、电渗析、反渗透膜法等方法。反渗透技术借助比渗透压更高的压力,使高氟水中的水分子改变自然渗透方向,通过反渗透膜被分离出来,先主要应用于海水淡化和超纯水制造工艺中。当前使用的反渗透膜主要有低压复合膜、海水膜和醋酸纤维素膜等。电渗析法是外加直流电场,利用离子交换膜的选择透过性,使水中的离子能够定向迁移。离子交换法是使用离子交换树脂或离子交换纤维实现除氟离子的一种方法。离子交换树脂需要用铝盐进行预处理和再生,因此费用会比较高。与离子交换树脂相比,离子交换纤维耗资小,而且比表面积较大,吸附能力强,交换速度及再生速度快,并且处理后不会给水体带来任何污染,反而具有清洁作用,是一种理想的深度去除水中氟离子的方法。
3化学混凝沉淀法废水处理试验研究
3.1研究机理
化学沉淀法就是利用离子与氟离子结合生成难溶于水的CaF2沉淀,等沉淀后以固液分离手段将F-从废水中去除。化学方程式如下:
Ca2++2F-=CaF2
如果在废水中同时加如钙盐和磷酸盐,能够形成更难溶于水的含氟化合物,是水中F-的残留量更低,提高了除氟效果。化学方程式如下:
F-+5Ca2++3P043-=Ca5(PO4)4F
混凝沉淀法通过在水中加入铁盐和铝盐两大类混凝剂,在配加Ca(OH)2,利用Al3+与F-的络合以及铝盐水解后生产的A1(OH)3矾花,去除废水中的F-。如加入铝盐,Al3+与F-形成AlFx(3-X)+,夹杂在Al(OH)3中被沉淀下来。
3.2试验流程与方法介绍
取定量废水水样,首先在水中加入一定量的CaCl2作为沉淀剂,等沉淀物沉淀5分钟后再加入适量的AlCl3和Ca(OH)2作为混凝剂,另加六偏磷酸钠作为助凝剂对其进行处理,再等沉淀5分钟后将水排放。尽量多做几次,每个试验完毕后,采用电极法测定每次试验后的氟离子的浓度。
化学混凝沉淀法将化学沉淀和混凝沉淀结合起来使用,能够解决一些常用方法处理以后存在的水质不稳定,药剂使用量过多,或存在二次污染等问题。试验结果表明,利用化学混凝沉淀法处理含氟工业废水,设备和工艺简单,运行费用低,除氟效果好,是一种比较理想的含氟废水的处理方法。
4结论
目前使用较多的方法主要是化学沉淀法、絮凝沉淀法和吸附法。化学沉淀法一般用于处理高浓度含氟废水,由于操作简单,低成本效果好,因此使用较为广泛。与化学沉淀法相反,混凝沉降法一般只适用于含氟较低的废水处理,高浓度含氟废水首先要经过化学沉淀法经过一级处理,然后采用混凝沉降法进行再次去氟。吸附法主要适用于水量较小的饮用水的深度处理,相对来说处理费用高,而且操作比较繁琐。当然,其它的一些方法各有各的使用领域和优势。
总之,含氟废水处理过程中,在选择处理方法时要了解实际情况,根据水质情况和要求达到的标准而定,尤其要重视以废治废和综合利用。因此,在含氟废水的处理中要遵循资源化与无害化相结合的原则,以获得较好的经济效益。
参考文献:
[1]张玲,薛学佳,周任明.含氟废水处理的最新研究进展[J].化工时刊,2004,18(12),23-25.
[2]彭天杰等.工业污染治理技术手册仁[M].成都:四川科学技术出版社,1985,1-19.
[3]哀劲松,张在利.含氟废水的混凝沉淀处理[J].污染防治技术.1999,12(4),35-36.
含氟化物污水处理方法范文篇2
关键词:半导体工业废水;雨污混接;氟离子浓度;污染特征因子
中图分类号:X522文献标识码:A文章编号:16749944(2014)02019603
1引言
随着经济的快速发展,我国半导体行业在全球电子整机产品向中国转移的过程中得到了快速发展,半导体企业纷纷在中国建立生产基地[1]。2006~2012年,我国半导体产业的销售额由1726.8亿增加至3528.5亿元,占国内半导体市场的份额由30.4%上升到36.1%,其占国际市场的份额也由8.79%上升至19.56%[2]。半导体生产在给我国带来经济利益的同时也带来了新的环境问题。在半导体制造业生产过程中,氢氟酸被大量使用。氢氟酸由于其氧化性和腐蚀性已成为氧化和刻蚀工艺中使用到的主要溶剂,同时在芯片制造、化学机械研磨、清洗硅片及相关器皿过程中也多次用到[3],因此半导体工业废水中往往含有较高浓度的氟离子。过高的氟离子进入水体不仅会对人体的牙齿、骨骼及生殖系统造成危害[4,5],同时也会影响植物对磷的吸收,增强金属铝在土壤中的溶解,导致氟、铝对植物的双重危害[6~8]。
为进一步改善水体水质,我国很多城市虽已投入大量人力、物力和财力将合流制排水系统改造为分流制排水系统,但上海、武汉及深圳等城市的实际运行效果并不明显,其中雨污混接是重要原因[9~11],而工业废水正是重要的雨污混接类型之一。本文拟探索将氟离子作为半导体工业废水的污染特征因子,以便为后续雨污混接系统混接溯源、混接水量比例计算和改造工程的顺利进行提供技术指导。
2实验及样品分析方法
2.1实验用水来源
实验用水为上海市有代表性的集成电路和印制电路板等半导体工业企业处理后的生产废水、某独立排水系统区域内的地下水、地表水(周围河水)及雨水泵站末端出流。
2.2样品采集方法
借鉴EPA针对污染特征因子的采样方法,在半导体企业正常生产时期内,每半小时在总排口进行水样采集,共采集20个批次有效水样;
其它类型的水样为每小时采集一次,共采集10个批次有效水样,且水样采集前48h和采集时间内为晴天[12]。
2.3实验仪器
分析仪器:FA2004N电子天平、Agilent720ES等离子体发射光谱仪(ICP)、紫外分光光度计、磁力搅拌器、移液枪、滴定仪、雷磁PXSJ-216型氟离子计等。
2.4分析项目及检测方法
CODCr、氨氮、硬度、表面活性剂、氰化物等采用国家标准方法进行检测,氟离子浓度采用氟离子计进行检测,铜、锌等金属离子用ICP检测。
3试验结果与分析
3.1不同类型水质中氟离子浓度比较
半导体工业企业生产废水经过物化和生化处理后,氟离子浓度虽然可以达到上海市半导体行业污染物排放标准,但其数值仍然相对较大。
如图1所示,印制电路板企业处理后的生产废水氟离子浓度为1.55~11.64mg/L,集成电路企业废水处理后氟离子浓度为6.92~11.99mg/L,这与戴荣海等得出的集成电路产业废水处理后氟离子浓度的水平是相当的[13]。虽然其总体已满足达标排放的要求,但相较其它类型的水体,氟离子浓度是异常的高。如图2所示,地表水、生活污水、地下水中氟离子浓度虽各在一定的范围内,但其总体水平都很低,均值浓度不超过2mg/L,远低于半导体工业企业废水中氟离子浓度。
3.2氟离子作为半导体工业废水污染特征因子的可行性分析
目前国内外关于半导体工业废水的污染特征因子研究很少或没有。美国EPA雨水系统混接调查技术指南中也只是罗列出部分工业生产过程中可能的污染特征因子,如表1所示。根据半导体工业企业的一般工艺过程,氟离子是可能的污染特征因子之一,同时铬、铜、锌和氰化物等也可能成为污染特征因子。
3.3氟离子浓度指标用于半导体工业废水雨污混接比
4结论与建议
(1)氟离子浓度可作为以印制电路板和集成电路为主的半导体工业废水的污染特征因子,其浓度均值为7.3mg/L,远高于其它类型的水质。
(2)氟离子浓度可作为半导体工业废水污染特征因子用于雨污混接问题中混接水量的计算,但由于在混接类型的确定过程中进行了简化处理,且浓度数据是以均值代入,因此只能得到相对比较接近的混接水量比例。
(3)针对以印制电路板和集成电路为主的半导体工业废水,可应用氟离子浓度作为污染特征因子用于雨污混接的混接源诊断。若要计算混接水量比例,需事先对研究范围内的工业企业进行分析,同时还需选择相对独立的排水系统,便于水量和污染特征因子的守恒计算。
(4)严控半导体工业废水的排放,以防止其混入雨水管网或其它水体中,造成高浓度的氟离子威胁人体健康和危害生态环境的不良影响。参考文献:
[1]童浩.半导体行业含氟废水处理的研究[J].环境科学与管理,2009(7):75~77,82.
[2]中国半民体行业协会,中国电子信息产业发展研究院.中国半导体产业发展状况报告[R].北京:中国半导体行业协会,中国电子信息产业发展研究院,2013.
[3]卢宁,高乃云,徐斌.饮用水除氟技术研究的新进展[J].四川环境,2007(4):119~122,126.
[4]雷绍民,郭振华.氟污染的危害及含氟废水处理技术研究进展[J].金属矿山,2012(4):152~155.
[5]吴新刚.氟对雄性生殖系统的毒性作用[J].微量元素与健康研究,2001(4):67~69.
[6]严健汉,詹重慈.环境土壤学[M].武汉:华中师范大学出版社,1985:234~245.
[7]KunduS,etal.Effectofflouriedonphosphateutilizationbywheat[J].NuclearAgricBiol,1987,16:65~68.
[8]BraenSNandWeinsteinLH.Uptakeoffluorideandaluminumbyplantsgrownincontanminatedsoils[J].Water,AirandSoilPollution,1985,24:215~218.
[9]王玲,孟莹莹,冯沧.不同混接程度分流制雨水系统旱流水量及污染负荷来源研究[J].环境科学,2009(12):3527~3533.
[10]汪常青.武汉市城市排水体制探讨[J].中国给水排水,2006(8):12~15.
[11]唐鸿亮.雨污兼合的排水系统体制探讨[J].给水排水,2005(3):45~50.
含氟化物污水处理方法范文
关键词:危险特性;鉴别;优化方案
中图分类号:X72
文献标识码:A文章编号:16749944(2017)12014203
1引言
危险废物鉴别,是指鉴别机构根据《国家危险废物名录》,或按照《危险废物鉴别标准》、《危险废物鉴别技术规范》等相关标准进行采样和检测,给出固体废物危险特性结论的过程。《“十二五”危险废物污染防治规划》要求“建立健全危险废物鉴定机制和制度,国家和省级环保部门要指定专门机构负责组织固体废物属性和危险废物鉴定工作”[1~3]。我国于1996年颁布实施了《危险废物鉴别标准》,并于2007年进行了修订;于1998年颁布实施了《国家危险废物名录》,并于2008年和2016年进行了修订。新版《国家危险废物名录》于2016年8月1日起正式施行。《国家危险废物名录》、《危险废物鉴别标准》、《固体废物鉴别导则》
(试行)、《危险废物鉴别技术规范》、《工业固体废物采样制样技术规范》、固体废物检测方法标准等初步构成了危险废物鉴别体系。目前我国已初步形成了危险废物鉴别体系。
笔者针对江苏省内光伏行业、印染行业和非化工园区污水处理厂等重点行业的污泥危险特性的具体案例分析,总结出了该省现行危废鉴别体系存在的问题,提出了典型行业污泥危废鉴别的优化方案。
2现行危险废物体系存在的问题
2.1鉴别标准因子不全面
《危险废物鉴别标准》鉴别项目包括腐蚀性、易燃性、反应性、浸出毒性、毒性物质含量和急性毒性,涵盖了综合性指标和特异性指标,包括了化学指标和生物指标。但是危险废物鉴别工作中所依据的《危险废物鉴别标准》编制于2016年而且物质主要集中在小分子物质方面,对于近些年新合成的部分有毒大分子物质未能做到及时的增补,造成在进行危险废物鉴定工作时样品或样品检出物不在浸出毒性或毒性物质含量危害成分项目名录之列的情况时有发生,如:印染废水污泥鉴定中,部分染料及染料助剂等大分子物质未包含在浸出毒性或毒性物质含量的因子中。
有些项目的测定如氟化钠、氟化锌、氰化钠、氰化钡等无法直接测定其物质的含量,而是通过测定无机氟化物和无机氰化物的值来通过分子量折算,因此并不具有准确性,其参考意义也有待考证。同时浸出毒性中已测定的物质如邻苯二甲酸二丁酯、苯等在毒性物质含量中仍然包含,造成重复测定和双重标准。导致危险废物鉴别标准―浸出毒性鉴别可能出现漏洞盲区死角,给危废鉴别科学性带来不确定性,进而给固体废物决策管理带来一定风险[4~6]。
2.2鉴别程序不完善
现行危险废物鉴别流程及鉴定体系下,危险废物鉴定工作的周期普遍较长。原因主要为样品数量多、采样及检测时间长。鉴别周期过长造成企业对固体废物的管理出现滞后,在鉴别的过程中会出现鉴别对象的不合理处置,对环境可能造成危害。同时鉴别结论的认定缺乏灵活性,企业实际运营过程中可能会因技术、市场、政策等多种原因发生一些工艺或原辅料等方面的变更。直接要求企业重新开展危险废物鉴别工作,企业负担重且不科学。
同时危险废物鉴别工作开展过程中涉及到多个部门,各部门之前由于缺乏有效的沟通,致使危险废物鉴别工作的开展过程中遇到了一定的困难。环评审批、竣工验收及危险废物鉴定分属不同的环保主管部门负责,各部门之间如何解决上述矛盾,如何对危险废物鉴定工作的介入时间进行明确的定论,是亟需解决的问题。
2.3鉴别工作缺乏环境监管
为有效监督鉴别机构的鉴定质量,确保鉴定结果“准确、公正”,根据目前该省鉴别流程,环保主管部门将每年对鉴别机构完成的鉴别报告进行抽检,抽检比例数量不少于10%,但截至目前,该省尚未开展对鉴别机构的考核工作。
在际鉴别工作中,鉴别机构对检测机构的采样过程进行监督,陪同采样,但对检测机构的分析过程无法做到监管,第三方检测机构能否保证检测数据的真实性和代表性尚有待论证。如何对检测机构进行监管,在检测机构采样、分析过程中需采取哪些措施是亟待解决的问题。
另外,目前管理部门对固体废物的管理主要集中在危险废物方面,对于鉴定后的固体废物缺乏有效的监管,既没有相应的管理部门,也没有完整的规章制度。虽然鉴定对象被鉴定为一般固废,但若处置不当,也存在一定的环境风险。如氟化钙污泥在资源化利用过程中若处置不当,可能存在一定的环境隐患:由于氟化钙在水及酸雨中有一定的溶解度,浸出量远大于地表水和地下水环境质量标准限值,如氟化钙污泥直接用于铺路或填埋,其中的氟容易通过降水随地表径流污染地表水、地下水和土壤,处置不当会引起地表水中氟化物浓度增加,造成地下水及土壤中含氟量超标,引起二次污染。
3典型行业污泥危废鉴别优化方案
3.1鉴别因子有针对性选取
从企业的原辅材料、生产工艺、污水处理工艺、污染物迁移等环节结合初步采样结果分析了待鉴别固体废物中可能存在的鉴别因子。各种污泥经原辅材料的迁移转化,鉴别因子较为复杂。从上述结果来看,不同的行业的检测因子是不同的,但当企业类型一致时,检测因子基本一致,略有差异。
3.1.1易燃性和反应性鉴别因子
目前江苏省鉴别的固体废物对象主要为废水处理污泥,对照易燃性和反应性鉴别标准中的条件,污泥基本可以排除易燃性和反应性。
3.1.2腐蚀性和急性毒性鉴别因子
从目前开展的鉴别项目来看,腐蚀性速率和急性毒性初筛这两项的检测周期长,费用高,导致鉴别周期长、费用高。氟化钙污泥因其酸碱影响较大,腐蚀性速率的检测还是必要的,但是针对印染污泥及非化工园区污水处理厂污泥,其腐蚀性速率和急性毒性初筛远远低于标准值,因此建议,对这两项可不纳入检测,腐蚀性仅检测待鉴别固体废物的pH值,如pH值超标,再复测其腐蚀性速率指标。
3.1.3浸出毒性和毒性物质含量鉴别因子
光伏企业因原辅材料及废水处理工艺的不同,因子略有不同,氟化钙污泥中浸出毒性和毒性物质含量鉴别因子大部分为无机物质,主要为铜、锌、总铬、镍、总银、无机氟化物等。因此建议光伏行业的主要检测因子为部分重金属和无机氟化物因子。
印染污泥因使用的染料不同,浸出毒性和毒性物质含量鉴别因子略有差异。使用活性染料的企业有机物因子主要为硝基苯、硝基苯胺类、萘胺类以及酚类物质;使用分散染料的企业的有机物因子主要为苯酚、苯胺类等。无机物因子涉及染料中管控的铜、锌、总铬、镍和可能含有的氟化物、氰化物类物质。
污水处理厂的浸出毒性和毒性物质含量鉴别因子因其接管企业类型的不同而不同。接管企业为电子行业时,鉴别因子主要为无机化合物和卤代烃类物质;接管企业为印染企业时,主要为无机物质和苯酚、苯胺类衍生物;接管企业的类型较多时,鉴别因子也随之变得复杂。
综上所述,鉴别因子的选择因企业类别的不同而有一定的差异,应进行针对性的筛选。氟化钙污泥的鉴别因子主要为腐蚀性、部分重金属及无机氟化物;印染污泥的鉴别因子主要为pH、铜、锌、总铬、镍、氟化物、氰化物类无机物质,根据染料的不同成分选择硝基苯类、酚类、苯胺及其同分异构体类物质;非重点行业工业污水处理厂的鉴别因子根据其接管企业的类型进行针对性选取。
3.2鉴别流程部分程序适当简化
以江苏省为例,江苏省固体废物危险特性的鉴别程序中,需经两次检测分析:初步采样检测分析和正式采样检测分析;经两次专家评审会:鉴别方案专家评审会和鉴别报告专家评审会。通过分析,废水处理污泥基本上均不属于危险废物,因此在鉴别流程中部分程序可以适当简化。
3.2.1初步采样检测分析
根据前面章节的分析,初步检测中检出的物质大部分均可以通过分析原辅材料、生产工艺、废水处理工艺、污染物迁移等得出,因此可以不需要进行样品的初步检测,直接通过污染物迁移确定其正式采样鉴别因子,如在鉴别方案专家评审会上专家对鉴别因子有异议,再根据需要开展样品检测。
3.2.2鉴别报告专家评审会
鉴别报告仅是在通过专家评审后的鉴别方案中补充检测结果,相较于鉴别方案的编制工作,鉴别报告的工作难度较小,因此只要鉴别机构按照鉴别方案专家评审会上专家提出的要求及相关鉴别规范进行报告的编制,根据相关标准确定b别结论,无需进行鉴别报告的专家评审会,这样有利于缩短鉴别周期,提高鉴别效率。
3.3加强后续管理及资源化利用水平
含氟污泥、印染污泥和污水处理厂污泥往往在鉴别后均不属于危险废物,但还是比其他一般固体废物具有更多的环境风险性。氟化钙污泥碱性较高,如管理不当,被随意堆放丢弃或作为一般固体废物进行填埋,会造成氟离子污染地表水、土壤和地下水环境,造成环境质量超标。印染污泥由于含有大量的染料、助剂及衍生物,如简单的填埋或直接暴露在旷野中,易造成二次污染或成为土地的遗留污染源;污水处理厂的污泥成分较单个企业的污泥成分更为复杂,造成二次污泥的可能性更大。
针对这些现状建议对这些固体废物进行分类管理,区别于一般固废,作为严控废物进行管理,有效防范这些污泥带来的一些潜在的环境隐患。另外,针对各类污泥本身的物理化学性质,可进一步探讨其资源化利用方式的可行性。如氟化钙污泥含有大量的氟离子,可作为副产品出售、作为萤石替代剂应用于炼铁过程中的脱硫、作为飞灰的稳定化添加剂以及通过浮选回用污泥等;印染污泥因具有一定的有机成分,可作为燃煤的辅助燃料,生产陶粒和悬浮材料;多种污泥由于具有团粒、颗粒坚硬等特性,可资源化利用烧制轻质的节能砖,生产水泥压制品,制作陶瓷等[7,8]。
4结论与展望
本文通过研究我国及江苏省危废鉴别体系,分析了我国现行危废鉴别体系存在的问题,提出了典型行业污泥危废鉴别的优化方案。为后续危废鉴别体系及程序的进一步完善提供参考。
目前,我国危险废物鉴别工作正处于试点阶段,虽然已建立了初步的鉴别体系,但尚不完善。为进一步提高我国危险废物环境管理水平,仍需继续加强我国危险废物鉴别体系研究,总结试点工作开展经验,尽快完善现行的鉴别工作体系以及试行的鉴别工作程序等,正式的危险废物鉴别程序及鉴别机构管理工作方案等指导性文件,以适应新形势下的危险废物鉴别工作。
江苏省应结合本地实际情况,并借鉴鉴别工作开展较好的其他省市的经验,进一步对该省危险废物鉴别体系及鉴别流程进行完善,强化监管,加强全省危险废物鉴别能力建设。
2017年6月绿色科技第12期
参考文献:
[1]
王琪,段华波,黄启飞.危险废物鉴别体系比较研究[J].环境科学与科技,2005,6(28):16~18.
[2]林锋,张瑜,沈莉萍,等.我国危险废物鉴别体系研究[J].污染防治技术,2016(2):77~79.
[3]孙绍锋,胡华龙,郭瑞,等.我国危险废物鉴别体系分析[J].环境与可持续发展,2015,40(2):37~39.
[4]段华波,王琪,黄启飞等.中国危险废物名录研究[J].四川环境,2005,24(3):94~97.
[5]黄凤娟,柴春红.《国家危险废物名录》在危险废物管理中的存在的问题[J].环境与发展,2013(5):10~11.
[6]陈小亮,吕晶.固体废物危险特性鉴别有关问题的思考研究[J].环境科学与管理.2014,39(4):48~50.