含氮废水处理方法范例(3篇)
含氮废水处理方法范文
【关键词】氨氮废水;闭环吹脱处理技术;乌洛托品;应用
0前言
近年来,随着城市人口的日益膨胀和工农业的不断发展,水环境污染事故屡屡发生,对人、畜构成严重危害。为满足公众对环境质量要求的不断提高的现状,国家对氮制订了严格的排放标准,研究开发出经济、高效的除氮处理技术已成为水污染控制工程领域研究的重点和热点。
1氨氮废水处理技术的难点分析
现有的氨氮废水处理方法处理成本高,工艺技术不够成熟,且只能处理浓度较低的废水。对于高浓度、大水量的氨氮废水现有技术中采用最广泛的还是吹脱技术,但氨氮吹脱技术存在效率低、能耗大、二次污染大、运行不够稳定、运行成本高等缺点。氨氮处理副产物一般为铵盐(硫酸铵或氯化铵),副产物经济效益极低,处理1吨高浓度氨氮废水的费用在100-150元左右,企业难以承受其高昂的费用,环保工程往往沦为形象工程。采用切实可行的氨氮废水治理技术,一要降低企业废水处理的成本,提高企业治理污染的积极性,保护当地的生态生活环境,二要尽可能的回收可利用的资源,进一步降低企业成本,尽可能的实现企业内部循环,以实现更大的社会效益,为相关行业的可持续性发展做出重要贡献。
2氨氮废水处理技术国内外现状
目前,氨氮废水处理技术主要有:直接蒸发结晶法,即将水以热水或蒸馏水的方式循环使用,铵盐以结晶方式回收;沸石吸附法,是指沸石离子交换废水中游离的氨(或铵离子),达到除去工业污水和生活污水中氨氮的目的;折点氯化法,是将Cl2通入废水中达到某一点,此点氨的浓度降为零,游离氯的含量最低,此过程中产生无毒无害的氮气;土壤灌溉法,是把低浓度的氨氮废水经过去除病菌、重金属、有机物等有害物质后,作为农作物的肥料来使用;电化学法,用电化学间接氧化法去除氨氮;氧化法,臭氧氧化法是指用臭氧使水中氨氮氧化为氮气的方法;微生物法,是模拟自然界中氮的循环过程,利用污泥中的专性好氧硝化菌和兼性反硝化菌的联合作用,将水体中的含氮化合物转变成氮气的方法;乳状液膜法,利用膜内外两侧氨浓度差的推动,氨分子不断通过膜表面吸附,渗透扩散迁移至膜相内侧解吸,从而达到分离去除氨氮的目的;电渗析法,是指在外加直流电场的作用下,利用离子交换膜的选择透过性,使离子从一部分水中迁移到另一部分水中的物理化学过程;化学沉淀法,通过向废水中投加某种化学药剂,除去铵根离子和游离的氨;吹脱法与气提法,利用水中氨氮的实际浓度与平衡浓度之间的差异,是氨氮转移至气相而去除。作为传统工艺虽然技术相对成熟,应用也非常广泛,但是传统工艺在基础建设和运行成本上都相对很高,并经传统工艺处理的废水氨氮含量一般在150~400mg/L之间,远远达不到国家规定的排放标准,极易造成二次污染,必须要经过下一步处理才能排放,这使得处理工艺很复杂。
3氨氮废水合成乌洛托品闭环吹脱工艺
氨氮废水闭环吹脱技术合成乌洛托品循环利用处理系统采用闭环吹脱与吸收工艺设计,主要是将高浓度氨氮废水通过控温、吹脱、吸收、除氨4道基本工序,利用甲醛吸收吹脱出的氨气合成乌洛托品,生成的10%乌洛托品直接返回制化工中间体系统进行回用。整个工艺过程大大节省了吸收后副产物的处理成本,减轻了排污负担,还能创造一定的经济效益(见图1氨氮废水闭环处理工艺流程图和图2氨氮吹脱与合成乌洛托品闭环处理系统工艺流程图)。
图2氨氮吹脱与合成乌洛托品闭环处理系统工艺流程图
1.吹脱进液泵;2.污水循环池;3.换热盘管;4.吹脱风机;5.除雾器;6.雾化喷头;7.填料区;8.吹脱塔;9.除雾器;10.雾化喷头;11.填料区;12.吸收(合成)塔;13.甲醛循环泵;14.换热盘管;15.乌洛托品集液池
4氨氮废水合成乌洛托品闭环吹脱工艺关键技术及创新点
4.1新型废水雾化技术的应用
该技术采用气液混合吹脱进液泵,将需处理的废水和空气在泵腔内进行混合,然后将废水提升至塔顶,通过高雾化实心螺旋喷头将废水雾化喷淋,使废水分布地更均匀、雾化地更彻底,增加了吹脱过程中气液接触的面积,减少了吹脱的气液比(从3000降至2000),降低了吹脱的能耗(吨废水耗电从3Kwh降至2Kwh)。
4.2吹脱塔使用脱氨剂新工艺
新型脱氨剂的使用降低了污水的表面能(表面张力),使污水在吹脱过程中形成大量的小气泡,从而使氨气在这些小气泡中更好的完成气液交换。新型脱氨剂的使用还打断了氨气与水分子之间的化学力(氢键),使平衡向右偏移,反应向正向进行,吹脱效率明显提高至90%以上,经其处理后的氨含量可以小于0.5ppm。
4.3采用氨气废物综合利用工艺,研发了合成乌洛托品方法
传统氨氮吹脱、吸收副产物为铵盐(硫酸铵或氯化铵),经济效益极低。本项目技术采用氨气与甲醛合成乌洛托品,副产物经济价值高。主要是将高浓度氨氮废水通过控温、吹脱、吸收、除氨4到基本工序,利用甲醛吸收吹脱出的氨气合成乌洛托品,生成的10%乌洛托品直接返回制化工中间体系统进行回用。整个工艺过程大大节省了吸收后副产物的处理成本,减轻了排污负担,还能创造一定的经济效益。
4.4复合材料防腐技术
由于氨氮废液具有一定的腐蚀性,因此非常有必要对设备做相应的防腐措施。吹脱塔、吸收塔等主体设备使用钢制衬塑内衬防腐材质(或玻璃钢-聚丙烯符合材料),是在钢制罐体内表面衬里聚丙烯或聚乙烯等防腐塑料,两者紧密连接。钢制材质确保了产品的强度,塑料层使产品耐腐蚀强度大大提高,提升了产品的可靠性,经久耐用。
4.5闭环式(气体,热量)新结构的设计
吹脱风机的出口连吹脱塔的进口,吹脱塔的出口连吸收塔的进口,吸收塔的出口连风机的进口,形成一个闭路,避免尾气中氨气外溢,造成二次污染。同时将风机运行过程中产生的热量留在系统中,降低气温对吹脱效果的影响。普通设备是仅仅通过风机的吹力,消耗风机的风压来吹脱废液,该闭路的设计使得设备内部不仅有吹力,也有吸力,从而使吹脱风机压降可从2000Pa降低至1000Pa,大大的减少风机能耗。
4.6采用纤维床除雾器
系统在吹脱塔、吸收塔的顶部安装纤维床除雾装置,当含有雾粒的气体水平通过纤维床层时,通过惯性碰撞、直接拦截、布朗运动原理将雾粒捕集在除雾器单个的纤维上,并逐渐凝聚成大颗粒或液膜,在气流推动力的作用下,穿过纤维床层,并沿床层的内表面在重力的作用下排出床层,达到捕集雾液净化气体的作用。该装置阻力小,除雾效果好,1um以上液滴去除率达到90%以上,能有效防止吹脱后的废水进入吸收系统中,防止废水对吸收液的污染,提高了吸收塔中副产物的纯度。
5结束语
综上所述,氨氮废水闭环吹脱技术合成乌洛托品循环利用处理系统通过氨氮吹脱技术从温度、效率、能耗、二次污染、循环利用等多方面进行综合研究,利用闭环吹脱和副产乌洛托品工艺,解决了高浓度氨氮废水吹脱中单一吹脱效率相关联的问题,达到降低气液比、提高氨氮吹脱效率、杜绝吹脱过程中产生的二次污染、合成乌洛托品循环利用、降低处理运行成本等目的。这种节能、高效、具有经济效益的氨氮吹脱工艺是市场的发展趋势及企业需求所在。
【参考文献】
[1]王莉萍,曹国平,周小虹.氨氮废水处理技术研究进展[J].化学推进剂与高分子材料,2009,3.
[2]王方,王明亚,王明太.回收氨氮废水用水处理技术的研究进展[J].当代化工,2011,12.
含氮废水处理方法范文
关键词:高浓度氨氮废水物化法生化联合法新型生物脱氮
过量氨氮排入水体将导致水体富营养化,降低水体观赏价值,并且被氧化生成的硝酸盐和亚硝酸盐还会影响水生生物甚至人类的健康。因此,废水脱氮处理受到人们的广泛关注。目前,主要的脱氮方法有生物硝化反硝化、折点加氯、气提吹脱和离子交换法等。消化污泥脱水液、垃圾渗滤液、催化剂生产厂废水、肉类加工废水和合成氨化工废水等含有极高浓度的氨氮(500mg/L以上,甚至达到几千mg/L),以上方法会由于游离氨氮的生物抑制作用或者成本等原因而使其应用受到限制。高浓度氨氮废水的处理方法可以分为物化法、生化联合法和新型生物脱氮法。
1物化法
1.1吹脱法
在碱性条件下,利用氨氮的气相浓度和液相浓度之间的气液平衡关系进行分离的一种方法。一般认为吹脱效率与温度、pH、气液比有关。
王文斌等[1]对吹脱法去除垃圾渗滤液中的氨氮进行了研究,控制吹脱效率高低的关键因素是温度、气液比和pH。在水温大于25℃,气液比控制在3500左右,渗滤液pH控制在10.5左右,对于氨氮浓度高达2000~4000mg/L的垃圾渗滤液,去除率可达到90%以上。吹脱法在低温时氨氮去除效率不高。
王有乐等[2]采用超声波吹脱技术对化肥厂高浓度氨氮废水(例如882mg/L)进行了处理试验。最佳工艺条件为pH=11,超声吹脱时间为40min,气水比为l000:1试验结果表明,废水采用超声波辐射以后,氨氮的吹脱效果明显增加,与传统吹脱技术相比,氨氮的去除率增加了17%~164%,在90%以上,吹脱后氨氮在100mg/L以内。
为了以较低的代价将pH调节至碱性,需要向废水中投加一定量的氢氧化钙,但容易生水垢。同时,为了防止吹脱出的氨氮造成二次污染,需要在吹脱塔后设置氨氮吸收装置。
Izzet等[3]在处理经UASB预处理的垃圾渗滤液(2240mg/L)时发现在pH=11.5,反应时间为24h,仅以120r/min的速度梯度进行机械搅拌,氨氮去除率便可达95%。而在pH=12时通过曝气脱氨氮,在第17小时pH开始下降,氨氮去除率仅为85%。据此认为,吹脱法脱氮的主要机理应该是机械搅拌而不是空气扩散搅拌。
1.2沸石脱氨法
利用沸石中的阳离子与废水中的NH4+进行交换以达到脱氮的目的。沸石一般被用于处理低浓度含氨废水或含微量重金属的废水。然而,蒋建国等[4]探讨了沸石吸附法去除垃圾渗滤液中氨氮的效果及可行性。小试研究结果表明,每克沸石具有吸附15.5mg氨氮的极限潜力,当沸石粒径为30~16目时,氨氮去除率达到了78.5%,且在吸附时间、投加量及沸石粒径相同的情况下,进水氨氮浓度越大,吸附速率越大,沸石作为吸附剂去除渗滤液中的氨氮是可行的。
Milan等[5]用沸石离子交换法处理经厌氧消化过的猪肥废水时发现Na-Zeo、Mg-Zeo、Ca-Zeo、k-Zeo中Na-Zeo沸石效果最好,其次是Ca-Zeo。增加离子交换床的高度可以提高氨氮去除率,综合考虑经济原因和水力条件,床高18cm(H/D=4),相对流量小于7.8BV/h是比较适合的尺寸。离子交换法受悬浮物浓度的影响较大。
应用沸石脱氨法必须考虑沸石的再生问题,通常有再生液法和焚烧法。采用焚烧法时,产生的氨气必须进行处理。
1.3膜分离技术
利用膜的选择透过性进行氨氮脱除的一种方法。这种方法操作方便,氨氮回收率高,无二次污染。蒋展鹏等[6]采用电渗析法和聚丙烯(PP)中空纤维膜法处理高浓度氨氮无机废水可取得良好的效果。电渗析法处理氨氮废水2000~3000mg/L,去除率可在85%以上,同时可获得8.9%的浓氨水。此法工艺流程简单、不消耗药剂、运行过程中消耗的电量与废水中氨氮浓度成正比。PP中空纤维膜法脱氨效率>90%,回收的硫酸铵浓度在25%左右。运行中需加碱,加碱量与废水中氨氮浓度成正比。
乳化液膜是种以乳液形式存在的液膜具有选择透过性,可用于液-液分离。分离过程通常是以乳化液膜(例如煤油膜)为分离介质,在油膜两侧通过NH3的浓度差和扩散传递为推动力,使NH3进入膜内,从而达到分离的目的。用液膜法处理某湿法冶金厂总排放口废水(1000~1200mgNH4+-N/L,pH为6~9)[7],当采用烷醇酰胺聚氧乙烯醚为表面活性剂用量为4%~6%,废水pH调至10~11,乳水比在1:8~1:12,油内比在0.8~1.5。硫酸质量分数为10%,废水中氨氮去除率一次处理可达到97%以上。
1.4MAP沉淀法
主要是利用以下化学反应:
Mg2++NH4++PO43-=MgNH4PO4
理论上讲以一定比例向含有高浓度氨氮的废水中投加磷盐和镁盐,当[Mg2+][NH4+][PO43-]>2.5×10?13时可生成磷酸铵镁(MAP),除去废水中的氨氮。穆大纲等[8]采用向氨氮浓度较高的工业废水中投加MgCl2·6H2O和Na2HP04·12H20生成磷酸铵镁沉淀的方法,以去除其中的高浓度氨氮。结果表明,在pH为8.9l,Mg2+,NH4,P043-的摩尔比为1.25:1:1,反应温度为25℃,反应时间为20min,沉淀时间为20min的条件下,氨氨质量浓度可由9500mg/L降低到460mg/L,去除率达到95%以上。由于在多数废水中镁盐的含量相对于磷酸盐和氨氮会较低,尽管生成的磷酸铵镁可以做为农肥而抵消一部分成本,投加镁盐的费用仍成为限制这种方法推行的主要因素。海水取之不尽,并且其中含有大量的镁盐。Kumashiro等[9]以海水做为镁离子源试验研究了磷酸铵镁结晶过程。盐卤是制盐副产品,主要含MgCl2和其他无机化合物。Mg2+约为32g/L为海水的27倍。Lee等[10]用MgCl2、海水、盐卤分别做为Mg2+源以磷酸铵镁结晶法处理养猪场废水,结果表明,pH是最重要的控制参数,当终点pH≈9.6时,反应在10min内即可结束。由于废水中的N/P不平衡,与其他两种Mg2+源相比,盐卤的除磷效果相同而脱氮效果略差。
1.5化学氧化法
利用强氧化剂将氨氮直接氧化成氮气进行脱除的一种方法。折点加氯是利用在水中的氨与氯反应生成氨气脱氨,这种方法还可以起到杀菌作用,但是产生的余氯会对鱼类有影响,故必须附设除余氯设施。在溴化物存在的情况下,臭氧与氨氮会发生如下类似折点加氯的反应:
Br-+O3+H+HBrO+O2,
NH3+HBrONH2Br+H2O,
NH2Br+HBrONHBr2+H2O,
NH2Br+NHBr2N2+3Br-+3H+。
Yang等[11]用一个有效容积32L的连续曝气柱对合成废水(氨氮600mg/L)进行试验研究,探讨Br/N、pH以及初始氨氮浓度对反应的影响,以确定去除最多的氨氮并形成最少的NO3-的最佳反应条件。发现NFR(出水NO3--N与进水氨氮之比)在对数坐标中与Br-/N成线性相关关系,在Br-/N>0.4,氨氮负荷为3.6~4.0kg/(m3·d)时,氨氮负荷降低则NFR降低。出水pH=6.0时,NFR和BrO--Br(有毒副产物)最少。BrO--Br可由Na2SO3定量分解,Na2SO3投加量可由ORP控制。
2生化联合法
物化方法在处理高浓度氨氮废水时不会因为氨氮浓度过高而受到限制,但是不能将氨氮浓度降到足够低(如100mg/L以下)。而生物脱氮会因为高浓度游离氨或者亚硝酸盐氮而受到抑制。实际应用中采用生化联合的方法,在生物处理前先对含高浓度氨氮的废水进行物化处理。
卢平等[12]研究采用吹脱-缺氧-好氧工艺处理含高浓度氨氮垃圾渗滤液。结果表明,吹脱条件控制在pH=95、吹脱时间为12h时,吹脱预处理可去除废水中60%以上的氨氮,再经缺氧-好氧生物处理后对氨氮(由1400mg/L降至19.4mg/L)和COD的去除率>90%。
Horan等[13]用生物活性炭流化床处理垃圾渗滤液(COD为800~2700mg/L,氨氮为220~800mg/L)。研究结果表明,在氨氮负荷0.71kg/(m3·d)时,硝化去除率可达90%以上,COD去除率达70%,BOD全部去除。Fikret等[14]以石灰絮凝沉淀+空气吹脱做为预处理手段提高渗滤液的可生化性,在随后的好氧生化处理池中加入吸附剂(粉末状活性炭和沸石),发现吸附剂在0~5g/L时COD和氨氮的去除效率均随吸附剂浓度增加而提高。对于氨氮的去除效果沸石要优于活性炭。
膜-生物反应器技术(MBR)是将膜分离技术与传统的废水生物反应器有机组合形成的一种新型高效的污水处理系统。MBR处理效率高,出水可直接回用,设备少战地面积小,剩余污泥量少。其难点在于保持膜有较大的通量和防止膜的渗漏。李红岩等[15]利用一体化膜生物反应器进行了高浓度氨氮废水硝化特性研究。研究结果表明,当原水氨氮浓度为2000mg/L、进水氨氦的容积负荷为2.0kg/(m3·d)时,氨氮的去除率可达99%以上,系统比较稳定。反应器内活性污泥的比硝化速率在半年的时间内基本稳定在0.36/d左右。
3新型生物脱氮法
近年来国内外出现了一些全新的脱氮工艺,为高浓度氨氮废水的脱氮处理提供了新的途径。主要有短程硝化反硝化、好氧反硝化和厌氧氨氧化。
3.1短程硝化反硝化
生物硝化反硝化是应用最广泛的脱氮方式。由于氨氮氧化过程中需要大量的氧气,曝气费用成为这种脱氮方式的主要开支。短程硝化反硝化(将氨氮氧化至亚硝酸盐氮即进行反硝化),不仅可以节省氨氧化需氧量而且可以节省反硝化所需炭源。Ruiza等[16]用合成废水(模拟含高浓度氨氮的工业废水)试验确定实现亚硝酸盐积累的最佳条件。要想实现亚硝酸盐积累,pH不是一个关键的控制参数,因为pH在6.45~8.95时,全部硝化生成硝酸盐,在pH<6.45或pH>8.95时发生硝化受抑,氨氮积累。当DO=0.7mg/L时,可以实现65%的氨氮以亚硝酸盐的形式积累并且氨氮转化率在98%以上。DO<0.5mg/L时发生氨氮积累,DO>1.7mg/L时全部硝化生成硝酸盐。刘俊新等[17]对低碳氮比的高浓度氨氮废水采用亚硝玻型和硝酸型脱氮的效果进行了对比分析。试验结果表明,亚硝酸型脱氮可明显提高总氮去除效率,氨氮和硝态氮负荷可提高近1倍。此外,pH和氨氮浓度等因素对脱氮类型具有重要影响。
刘超翔等[18]短程硝化反硝化处理焦化废水的中试结果表明,进水COD、氨氮、TN和酚的浓度分别为1201.6、510.4、540.1、110.4mg/L时,出水COD、氨氮、TN和酚的平均浓度分别为197.1、14.2、181.5、0.4mg/L,相应的去除率分别为83.6%、97.2%、66.4%、99.6%。与常规生物脱氮工艺相比,该工艺氨氮负荷高,在较低的C/N值条件下可使TN去除率提高。
3.2厌氧氨氧化(ANAMMOX)和全程自养脱氮(CANON)
厌氧氨氧化是指在厌氧条件下氨氮以亚硝酸盐为电子受体直接被氧化成氮气的过程。ANAMMOX的生化反应式为:
NH4++NO2-N2+2H2O
ANAMMOX菌是专性厌氧自养菌,因而非常适合处理含NO2-、低C/N的氨氮废水。与传统工艺相比,基于厌氧氨氧化的脱氮方式工艺流程简单,不需要外加有机炭源,防止二次污染,又很好的应用前景。厌氧氨氧化的应用主要有两种:CANON工艺和与中温亚硝化(SHARON)结合,构成SHARON-ANAMMOX联合工艺。
CANON工艺是在限氧的条件下,利用完全自养性微生物将氨氮和亚硝酸盐同时去除的一种方法,从反应形式上看,它是SHARON和ANAMMOX工艺的结合,在同一个反应器中进行。孟了等[19]发现深圳市下坪固体废弃物填埋场渗滤液处理厂,溶解氧控制在1mg/L左右,进水氨氮<800mg/L,氨氮负荷<0.46kgNH4+/(m3·d)的条件下,可以利用SBR反应器实现CANON工艺,氨氮的去除率>95%,总氮的去除率>90%。
Sliekers等[20]的研究表明ANAMMOX和CANON过程都可以在气提式反应器中运转良好,并且达到很高的氮转化速率。控制溶解氧在0.5mg/L左右,在气提式反应器中,ANAMMOX过程的脱氮速率达到8.9kgN/(m3·d),而CANON过程可以达到1.5kgN/(m3·d)。
3.3好氧反硝化
传统脱氮理论认为,反硝化菌为兼性厌氧菌,其呼吸链在有氧条件下以氧气为终末电子受体在缺氧条件下以硝酸根为终末电子受体。所以若进行反硝化反应,必须在缺氧环境下。近年来,好氧反硝化现象不断被发现和报道,逐渐受到人们的关注。一些好氧反硝化菌已经被分离出来,有些可以同时进行好氧反硝化和异养硝化(如Robertson等分离、筛选出的Tpantotropha.LMD82.5)。这样就可以在同一个反应器中实现真正意义上的同步硝化反硝化,简化了工艺流程,节省了能量。
贾剑晖等[21]用序批式反应器处理氨氮废水,试验结果验证了好氧反硝化的存在,好氧反硝化脱氮能力随混合液溶解氧浓度的提高而降低,当溶解氧浓度为0.5mg/L时,总氮去除率可达到66.0%。
赵宗胜等[22]连续动态试验研究表明,对于高浓度氨氮渗滤液,普通活性污泥达的好氧反硝化工艺的总氮去除串可达10%以上。硝化反应速率随着溶解氧浓度的降低而下降;反硝化反应速率随着溶解氧浓度的降低而上升。硝化及反硝化的动力学分析表明,在溶解氧为0.14mg/L左右时会出现硝化速率和反硝化速率相等的同步硝化反硝化现象。其速率为4.7mg/(L·h),硝化反应KN=0.37mg/L;反硝化反应KD=0.48mg/L。
在反硝化过程中会产生N2O是一种温室气体,产生新的污染,其相关机制研究还不够深入,许多工艺仍在实验室阶段,需要进一步研究才能有效地应用于实际工程中。另外,还有诸如全程自养脱氮工艺、同步硝化反硝化等工艺仍处在试验研究阶段,都有很好的应用前景。
4小结
虽然处理高浓度氨氮废水的处理方法有多种,但是目前还没有一种能够兼顾流程简单、投资省、技术成熟、控制方便以及无二次污染等各个方面。如何经济有效地处理高浓度氨氮废水仍是摆在环境工程工作者面前的一道难题,如何将新型高效的生物脱氮工艺投入实际应用以及简单实用的生化联合工艺应该成为今后研究工作的重点。
参考文献
1王文斌,董有,刘士庭.吹脱法去除垃圾渗滤液中的氨氮研究.环境污染治理技术与设备,2004,5(6):51
2王有乐,翟钧,谢刚.超声波吹脱技术处理高浓度氨氮废水试验研究.环境污染治理技术与设备,2004,2(2):59
3IzzetO,MahmutA,IsmailK,etal.Advancedphysico-chemicaltreatmentexperiencesonyoungmunicipallandfillleachates.WasteManagement,2003,23:441~446
4蒋建国,陈嫣,邓舟,等.沸石吸附法去除垃圾渗滤液中氨氮的研究.给水排水,2003,129(13):6
5MilanZ,sanchezE,PozasC,etal.Ammoniaremovalfromanaerobicallytreatedpiggerymanurebyionexchangeinxolumnspackedwithhomoioniczeolite.ChemicalEngineeringJournal,1997,66:65~71
6杨晓奕,蒋展鹏,潘咸峰.膜法处理高浓度氨氮废水的研究.水处理技术,2003,9(2):85
7孙锦宜.含氮废水处理技术与应用.北京:化学工业出版社,2003
8穆大刚,孟范平,赵莹,等.化学沉淀法净化高浓度氨氮废水初步研究.青岛大学学报(工程技术版),2004,19(2):1
9KumashiroK,IshiwatariH,NawamuraY.Apilotplantstudyonusingseawaterasamagnesiumsourceforstruviteprecipitation.PaperpresentedatSecondInternationalConferenceontheRecoveryofPhosphorusfromSewageandAnimalWastes,Noordwijkerhout,TheNetherlands,2001
10LeeSI,WeonSY,LeeCW,etal.Removalofnitrogenandphosphatefromwastewaterbyadditionofbittern.Chemosphere,2003,51:265~271
11YangM,KazuyaU,HarukiM.Ammoniaremovalinbubblecolumnbyozonationinthepresenceofbromide.Wat.Res.,1999,33(8):1911~1917
12卢平,曾丽璇,张秋云,等.高浓度氨氮垃圾渗滤液处理方法研究.中国给水排水,2003,19(5):44
13HoranNJ,GoharH,HillB.Applicationofagranularactivatedcarbon-bioloficalfluidisedbedforthetreatmentoflandfillleachatescontaininghighconcentrationsofammonia.Wat.Sci.Tech.,1997,36(2~3):369~375
14FikretK,YunusMP.Adsorbentsupplementedbiologicaltreatmentofpretreatedlandfillleachatebyfed-batchoperation.BioresourceTechnology,2004,94:285~291
15李红岩,高盂春,杨敏,等.组合式膜生物反应器处理高浓度氨氮废水.环境科学,2002,23(5):62
16RuizaG,JeisonbD,ChamyaR.Nitrificationwithhighnitriteaccumulationforthetreatmentofwastewaterwithhighammoniaconcentration.WaterResearch,2003,37:1371~1377
17刘俊新,王秀蘅.高浓度氨氮废水亚硝酸型与硝酸型脱氮的比较研究.工业用水与废水,2002,33(3):1~4
18刘超翔,胡洪营,彭党聪,等.短程硝化反硝化工艺处理焦化高氨废水.中国给水排水,2003,19(8):11
19孟了,陈永,陈石.CANON工艺处理垃圾渗滤液的高浓度氨氮.给水排水,2004,30(8):24
20OlavA,SliekersKA,ThirdWA,etal.CANONandAnammoxinagas-liftreactor.FEMSMicrobiologyLetters,2003,218:339~344
含氮废水处理方法范文篇3
关键词:氨氮;水生植物;养殖废水;去除效果
中图分类号:X703;X173文献标识码:A文章编号:0439-8114(2016)16-4129-04
DOI:10.14088/ki.issn0439-8114.2016.16.014
近年来,随着社会经济的持续增长,城乡居民生活水平逐年提高,各种惠农政策在广大农村的普遍实施,使中国农村经济得到了快速发展,禽畜养殖业也逐步朝规模化、集约化方向发展壮大。根据《畜禽养殖业产污系数与排污系数手册》推荐的正常育肥期生猪产污系数(中南地区:粪便量1.18kg/(头・d),尿液量3.18L/(头・d))计算,2014年年末全国生猪存栏46583万头,日均排放粪便54.97万t、排尿14.82万L[1,2]。加之养殖场经营者和农村居民环保知识缺乏,导致广大农村地区养殖生产环境污染严重,使养殖环境污染治理形势日趋严峻。
然而,养殖废水的排放在时间和空间上均具有鲜明的特点,采用工程的办法治理虽然效果理想,但投资较大,往往超过了养殖业主的承受能力[3-5]。而人工湿地因其具有投资与运行维护费用低、无二次污染、改善生态与景观环境等优点而日益受到人们的关注[6-11]。本研究旨在通过模拟试验,探讨3种常见水生植物对养殖废水中氨氮的净化效果,从而为人工湿地系统处理养殖废水提供理论依据。
1材料与方法
1.1材料
1.1.1供试植物的采集与驯化分别在湖南省衡阳市石鼓区木村鱼塘、灵官庙村农户猪场排水沟、李坳村排水沟以及湖南环境生物职业技术学院养殖场排水池采集芦苇(Phragmitesaustralis)、水葫芦(Eichhorniacrassipes)和蕹菜(Ipomoeaaquatica)3种水生植物样品。
在上述沟、渠、鱼塘中采集适量水样(5.0L/处)。将采集的芦苇、水葫芦和蕹菜依次用低、中、高浓度养殖废水进行培养。培养条件:pH7左右(用氢氧化钾溶液调节),温度23~28℃,光照为3000~5000lx。首先进行适应性培养驯化,待植物生长状况稳定后,再进行不同浓度的养殖废水水培试验,同时,对试验植物的耐污能力进行全面考察和评价(主要考察植物的耐污能力)。通过15d的驯化观察,3种供试植物在各种浓度养殖废水中均能正常生长繁殖。
1.1.2养殖废水样品的采集分析与模拟从湖南环境生物职业技术学院养殖场排水池中采集水样,分析其氨氮、总磷及有机物的含量。通过分析,本研究养殖废水的污染浓度范围见表1,pH为6.5~7.5。
结合养殖废水成分分析结果,人工配制试验用水。配制方案为:从湖南环境生物职业技术学院养殖场采集养殖废水原液,先沉淀处理,再使其充分厌氧发酵,然后用去离子水按照表2设计化学需氧量(CODcr)浓度,配制5组不同的试验废水,在此基础上,用氯化铵调节氨氮浓度,用磷酸二氢钾调节总磷浓度。
试验废水的浓度以氨氮(NH3-N)、总磷(TP)和化学需氧量(CODcr)为主要参考指标,本试验拟从高浓度到低浓度设5组。
1.2试验设计
将候选植物(芦苇、水葫芦、蕹菜、芦苇-水葫芦组合、芦苇-蕹菜组合)分别置于人工模拟的养殖废水中培养。在培养0d(2h)、2、5、10、15d后,分别测定水样中氨氮(NH3-N)的浓度。以培养时间(d)为横坐标,水样中氨氮(NH3-N)浓度(mg/L)为纵坐标作曲线。
试验按照模拟养殖废水浓度分别设置对照组,对照组未种植水生植物,观察其在试验条件下氨氮(NH3-N)的自我净化规律。
1.3数据处理
分析植物对废水中氨氮的净化效率,将试验所得数据进行计算。净化效率=(培养15d后试验废水中氨氮的浓度-试验废水设计的氨氮的浓度)/试验废水设计的氨氮的浓度×100%。
2结果与分析
2.1芦苇对养殖废水中氨氮的净化效果
芦苇对养殖废水中氨氮的净化效果见图1。从图1可知,试验15d,芦苇对5组养殖废水中的氨氮均有一定的净化效果,第一组至第五组模拟养殖废水的氨氮含量分别下降至129、81、66、51、28mg/L,净化效率分别为48.4%、59.5%、56.0%、49.0%、44.0%。参照《畜禽养殖业污染物排放标准》(GB18596-2001),有3组达到最高允许日均排放浓度不超过80mg/L的要求。
对照组中氨氮含量虽然均有降低趋势,但下降速率与试验组相比明显较差。试验15d,对照组的氨氮含量分别下降至148、110、92、64、31mg/L,去除效率分别为40.8%、45.0%、38.7%、36.0%和38.0%,净化效果明显不及处理组。
芦苇对养殖废水的氨氮净化能起到一定作用,但由于芦苇根系以及生长趋势不如蕹菜、水葫芦发达,因此,其净化效率一般。导致其产生先慢后快的原因可能是前期芦苇对养殖废水需要一个适应过程。
2.2蕹菜对养殖废水中氨氮的净化效果
蕹菜对养殖废水中氨氮的净化效果见图2。从图2可知,试验15d,蕹菜对5组养殖废水中的氨氮均有一定的净化效果,第一组至第五组模拟养殖废水的氨氮含量分别下降至124、80、61、49、27mg/L,净化效率分别为50.4%、60.0%、59.3%、51.0%、46.0%。参照《畜禽养殖业污染物排放标准》(GB18596-2001),效果较芦苇明显,5组废水中,有4组能达到最高允许日均排放浓度不超过80mg/L的要求。净化速率方面,蕹菜较芦苇好,原因可能是蕹菜根系以及生长趋势较芦苇发达。
2.3水葫芦对养殖废水中氨氮的净化效果
水葫芦对养殖废水中氨氮的净化效果见图3。从图3可知,试验15d,水葫芦对5组养殖废水中的氨氮均有一定的净化效果,第一组至第五组模拟养殖废水的氨氮含量分别下降至107、65、45、37、21mg/L,净化效率分别为57.2%、67.5%、70.0%、63.0%、58.0%。参照《畜禽养殖业污染物排放标准》(GB18596-2001),5组废水中,有4组氨氮达到最高允许日均排放浓度不超过80mg/L的要求。净化速率方面,水葫芦较芦苇、蕹菜好,原因可能是水葫芦根系以及生长趋势较芦苇、蕹菜发达。
2.4芦苇-蕹菜组合对养殖废水中氨氮的净化效果
芦苇-蕹菜组合对养殖废水中氨氮的净化效果见图4。从图4可知,试验15d,芦苇-蕹菜组合对5组养殖废水中的氨氮均有一定的净化效果,第一组至第五组模拟养殖废水的氨氮含量分别下降至98、55、45、33、16mg/L,去除效率分别为60.8%、72.5%、70.0%、67.0%和68.0%。参照《畜禽养殖业污染物排放标准》(GB18596-2001),5组废水中只有1组氨氮未达到最高允许日均排放浓度不超过80mg/L的要求。净化速率方面,也较单一植物好,原因可能是植物组合弥补了芦苇对养殖废水适应性方面的不足,同时蕹菜具有较多的匍匐根,既能长在土壤中,又能浮于水上,解决了污水垂直方向的净化问题。
2.5芦苇-水葫芦组合对养殖废水中氨氮的净化效果
芦苇-水葫芦组合对养殖废水中氨氮的净化效果见图5。从图5可知,试验15d,芦苇-水葫芦组合对5组养殖废水中的氨氮均有一定的净化效果,第一组至第五组模拟养殖废水的氨氮含量分别下降至85、47、40、28、15mg/L,净化效率分别为66.0%、76.5%、73.3%、72.0%、70.0%。参照《畜禽养殖业污染物排放标准》(GB18596-2001),效果较单一芦苇或水葫芦明显,5组废水中仅有1组不达标,氨氮含量明显较单一植物下降很多。净化速率方面,也较单一植物或芦苇-蕹菜组合好。原因可能是植物组合弥补了芦苇对养殖废水适应性方面的不足,同时水葫芦浮于水面上,解决了污水垂直方向的净化问题。同时水葫芦的生长较蕹菜要快,故其净化效果比芦苇-蕹菜组合要好。
3小结与讨论
通过3种水生植物(芦苇、蕹菜和水葫芦)对养殖废水中氨氮的净化作用研究,得出如下结论。
1)通过15d的水培试验,3种水生植物及其组合对养殖废水中氨氮的净化效率为44.0%~76.5%,而对照组为36%~45%。
2)从单一植物的净化效率分析,水葫芦>蕹菜>芦苇;植物组合方面,芦苇-水葫芦组合>芦苇-蕹菜组合,且植物组合的净化效率明显优于单一植物。由于废水中污染物质主要是通过根系等吸收,而水葫芦的生长繁育较其他两种植物旺盛,故其净化效率较为理想。植物组合的净化效率较单一植物理想的原因可能是弥补了植物根系在废水分层不够均匀的不足,从而使根系吸收更加充分。
3)构建人工湿地养殖废水处理系统时,应组建有一定层次的植物体系,以利于加快对污染物质的净化。
4)植物只是人工湿地的一部分,人工湿地之所以具有良好的去污效果,还与其填料、微生物等有关。下一步应探讨适宜的填料,研究人工湿地系统微生物,构建完整的适宜养殖废水处理的人工湿地。
5)人工湿地类型较多,其水流方式对处理效果的影响也较大,下一步应加强适合养殖废水处理的人工湿地水流方式研究,同时结合植物、填料研究成果,揭示水力学特点(污染负荷、水力停留时间等)对养殖废水中污染物降解的影响规律。
6)研究不同季节提高处理效果的保护措施。
参考文献:
[1]王俊能,许振成,吴根义,等.畜禽养殖业产排污系数核算体系构建[J].中国环境监测,2013,29(2):143-147.
[2]董红敏,朱志平,黄宏坤,等.畜禽养殖业产污系数和排污系数计算方法[J].农业工程学报,2011,27(1):303-308.
[3]张克强,高怀友.畜禽养殖业污染物处理与处置[M].北京:化学工业出版社,2004.
[4]王建家,窦丽花,王洪.电解法制备高铁酸钾及其对猪场养殖废水的净化[J].湖北农业科学,2015,54(20):4999-5003.
[5]李红娜,冷剑,史志伟,等.低强度超声波强化A2/O工艺处理猪场养殖废水[J].环境科学与技术,2015,38(9):157-161.
[6]蒙宽宏,刘延滨,张玲,等.芦苇与香蒲对水中总磷总氮净化能力研究[J].环境科学与管理,2014,39(11):38-40.
[7]孙伟.简述畜禽养殖废水处理方法研究进展[J].环境研究与监测,2014,27(2):68-69,76.
[8]程燕,龙峥,姜无边,等.水葫芦对猪场废水的净化作用[J].养猪,2014(4):86-87.
[9]林启存,冯晓宇,黄卫,等.水蕹菜浮床在富营养化水体中的应用研究进展[J].安徽农业科学,2014,42(29):10111-10113.