欢迎您访问大河网,请分享给你的朋友!

当前位置 : 首页 > 范文大全 > 报告范文

继电器的保护原理范例(12篇)

来源:网友 时间:2024-03-09 手机浏览

继电器的保护原理范文1篇1

关键词高压电机;智能控制器;控制方式

中图分类号TM307文献标识码A文章编号1674-6708(2011)43-0056-02

0引言

随着智能微机型电机保护的广泛应用和推广,其这类产品不仅品种繁多,而且产品质量也非常的可靠。针对我公司现使用的SEL-701型高压电机保护控制器,它完全具备完整的感应电动机的保护功能,并且还具有先进的监视、报告、测量和控制等功能。尤其它具有RS-485/232通讯接口,在实现高压电机智能化的管理上,更能充分体现出微机型保护的优越性[1,2]。某公司装置区共有14台高压电机,原高压电机的保护控制器为IMM7990型,虽该控制器比GL型机械保护控制器先进,但随着301供电系统微机化管理的不断完善,该控制器无标准的通讯接口规约t,无法与301微机系统实现时时通讯,且该控制器使用年限已久,元件老化及绝缘故障频繁出现,基于上述的原因,为了进一步提高高压电机的可靠运行,进一步完善301微机化管理的水平。我们逐年对高压电机的保护实施更新改造,充分发挥了301总变微机化管理的优点,应用效果十分显著。

1原高压电机保护控制器存在的问题提出

原高压电机采用的保护控制器IMM7990,具有的保护功能:不平衡、短路、接地保护、过载、堵转限制启动次数等保护功能项。

通过十几年运行情况来看,无论是从使用寿命,还是从继电器本身的保护功能来看,存在诸多的问题:1)该继电器为分离插入安装方式,由于受我厂环境的影响,继电器底座易吸附尿素粉尘,造成继电器座绝缘下降,经常出现供电系统直流控制、操作电源绝缘报警,对变电所的安全运行构成一定的威胁;2)IMM7990继电器使用年限已久,继电器内部元件老化严重,且多次出现误报警。我公司的高压电机保护在未更换智能型控制器之前,如560PM01A、300PM02A、300PM01B电机的IMM7990继电器已损坏;3)IMM7990继电器虽采用电子元件集成化控制,但该控制器控制逻辑分析技术较落后。当出现故障报警时,需通过故障显示代码及动作值进行综合分析、判断具体的故障类型,对分析结果影响较大;4)IMM7990的通讯规约为非标准的,无法与301微机系统建立通讯,无法满足301供电系统的微机化管理。

鉴于上述原因,我们利用大修逐步进行高压电机保护系统的整改,目前已完成了8台高压电机保护控制器的更换改造工作。

2SEL-701保护控制器的功能介绍

SEL-701电机保护控制器采用电子集成化控制技术,通过逻辑运算实现智能化控制和管理。它不仅具备完整的感应电动机保护功能,而且还具备很多强大的辅助功能。它可以在线跟踪电动机的负荷及使用情况,通过事件报告和顺序事件记录器报告来减少故障后的分析时间。在测量方面它可以测量电机三相电流、系统电压、功率因数、频率等等参数,能直观的掌握电机运行电流显示、电度计量、电机运行时间的统计、断路器跳合闸次数统计等。

由功能框图看出:SEL-701保护功能非常强大,采用国际标准保护功能代码。继电器内部逻辑运算灵活多样、适应性强,继电器输出的接点具有可编程功能,应用极其方便。

3SEL-701型电机保护控制器的应用

3.1配置简介

我公司的14台高压电机经过近两年装置大修,已逐步更换整改了8台高压电机的保护,将原IMM7990多功能保护控制器更换为SEL-70l智能型,该保护控制器安装在6KV高压电机开关柜上,只需在原保护的安装位置处按SEL-701安装尺寸扩孔,对开关柜整体外观不受任何影响,各开关柜上新更换SEL-701通讯出口并接,接入微机实现通讯监控。

3.2SEL-701与微机通讯、监控的管理

SEL-70l控制器后面板的通讯接口(C10、C11、C12、C13、C15),由一根4芯通讯电缆至原电度表屏内,接入通讯接口转换器485/232,经过通讯控制器和网络服务器,与微机实现通讯管理。运行pestar2.0自动化监控软件,运行“SSET.EXE”程序或在前台机项打开“设备登记系统配置”,添加SEL701保护设备,并在子站进行设备登记以及模拟量、开关量的设置,运行“运行参数整定项“进行相关报警定义。通过微机进入FRONT.EXE程序界面,查看高压电机运行实时值。

3.3电流、电压采样及控制输出接点设置的实现

以公司530PM01A高压电机保护整改为例:SEL-701电流回路取样来自T1、T3(150/5)电流互感器,TI/T3电流CT安装在530PM01A高压电机6KV柜内,在本次整改中电流元件仍采用原保护CT,将CT二次对应接入SEL-701控制器对应端子,接线方式采用两元件监测,端子接线见图2。

在图2中:设置B(08,09)接点为90%Ue电压监测控制,B(14,15)接点为70%Ue电压监测控制,以实现系统电压在70%Ue-90%Ue之间波动时,530PMOIA甩负荷后禁止电机自启动,对保护系统电压的稳定性起到了很好的控制作用。

530PMOIA控制再启动/卸载控制图修改后,设置OUT3=70%Ue30S;OUT2=90%Ue3S,其作用是当供电系统电压低于70%Ue超过30S后解除自启动功能;当系统电压瞬时晃电(低于70%Ue1S),恢复至90%Ue且稳定3S以上,允许50PM01A实现自启动。

3.4用户程序配置

完成电流、电压回路采样后,通过继电器面板或窜行通讯接口进行参数设置。该继电器完全满足原IMM7990多功能保护继电器的所有功能,由OUT1输出接点实现故障保护跳闸,OUT2/OUT3实现高压电机在低电压情况下禁止自启动,无论是从设备本身安全方面,还是从稳定系统电压方面都起到了很好的保护作用。

4结论

完成530PM01A/B/C/D高压电机保护的整改工作,在次年又完成560PMOIA、300PM02A/B、1OOCM05高压电机的保护的整改。整改后投运至今,SEL-701保护控制器运行稳定、监控正常。在保证高压电机安全稳定运行的条件下,为化肥装置的长、满、优运行提供了可靠的保证。在今后装置大修期间将逐步完成其它几台高压电机保护的改造,并充分利用SEL-701的灵活多样的逻辑运算功能,以达到实现简化6KV高压电机的控制回路的目的,真真做到高压电机安全、稳定的运行。

参考文献

[1]孔德星,彭红,匡森.高压异步电动机综合保护器的研究[J].焦作工学院学报:自然科学版,2002,21(5).

继电器的保护原理范文篇2

[关键词]变压器;瓦斯保护;继电器

中图分类号:TM407文献标识码:A文章编号:1009-914X(2015)21-0089-01

1瓦斯保护的范围

瓦斯保护属于非电量保护,与差动保护共同构成了变压器的主保护。它是基于反应气体状态的瓦斯继电器来保护变压器油箱内的一切故障。可以保护到差动保护所保护不到的位置――铁心。还包括:油箱内的多相短路、绕组匝间短路、绕组与铁芯或与外壳间的短路、套管内部故障、绕组内部断线及绝缘劣化和油面下降或漏油、分接开关接触不良或导线焊接不良等。

2瓦斯继电器构造及工作原理

2.1瓦斯继电器构造

在图1所示的瓦斯保护继电器,其上下两个部分分别装设了密封在玻璃管内的磁力干簧接点,上部为浮子(开口杯),下部设有金属档板,这两个部分都能以轴为中心自由旋转。其信号回路浮子(开口杯),跳闸回路接金属档板。

2.2瓦斯继电器动作原理

瓦斯继电器有三种状态:①正常运行状态。变压器处于稳定运行状态时,气体继电器中充满油。浮子3浮于油内,干簧接点10断开;档板在自重的作用下下垂,其一对干簧接点20一样是断开的。②轻瓦斯动作:仅发信号而不跳闸。变压器内部存在小故障时,不易快速产生气体。气体在缓慢上升至油枕的这个过程,先积存在瓦斯继电器的上部空间,浸在油中的浮子3伴随下降的油面逐渐下降,使磁铁16逐渐接近磁力干簧接点20,最终干簧接点20闭合(信号回路接点闭合),接通延时信号;轻瓦斯”保护信号动作。③重瓦斯动作:跳闸及发信号。如果变压器内部故障较为严重,就会产生强烈的气体,瞬时增大油箱压力,由此产生强大的油流快速流向油枕,流动过程中会对金属档板5造成强烈的冲击,档板克服弹簧8的阻力,带动磁铁6移向磁力干簧接点10。在这种情况下,干簧接点闭合(跳闸回路接点闭合),接通跳闸回路,一、二次断路器跳闸,见变压器电源关闭,使“重瓦斯”保护动作,防止故障范围扩大,从而规避运行风险。

3变压器瓦斯保护动作的原因

3.1轻瓦斯保护信号动作原因及判断

通常情况下,我们可以根据“轻瓦斯信号动作后继电器内有无气体聚集”这一标准来诊断信号动作的原因。

3.1.1无气体聚集时轻瓦斯动作原因。瓦斯继电器机械故障或严重漏油;二次回路故障;温度骤降引起油位降低或油路堵塞。

3.1.2有气体聚集时轻瓦斯动作原因:通过鉴定继电器内气体是空气或可燃性气体来判断故障的性质。空气:换油,补油进入空气未排净;更换变压器后静置时间短;二次回路故障;可燃性气体:变压器过热或放电性故障:倒置专用玻璃瓶,瓶口必须靠近瓦斯继电器的放气阀,以便对气体进行全面收集。若收集到不易燃的黄色气体,则判定故障点在变压器的木质部分;若收集到具有刺鼻臭味、可燃的淡黄色气体,则判定故障点在纸质部分;若收集到黑、灰色易燃气体,则判定是绝缘油故障。需要注意的是:室外变压器可以直接打开放气阀点燃。室内变压器收集的气体,必须置于安全地点进行点燃!重要变压器的瓦斯保护信号动作时,用色谱仪来定性、定量分析气体样本和油样本中的气体,根据所含成分和含量能准确判断出故障性质、发展趋势和严重程度。

3.2重瓦斯动作跳闸原因的判断

①变压器内部严重故障:相间短路,绕组匝间短路;②二次回路故障;③近区穿越性短路故障。

4瓦斯继电器的实验室检验

瓦斯继电器的实验室检验,应固定于专用的气体继电器实验台进行。

4.1一般性检验

①玻璃窗,放气阀,探针和引出线端子等应完整不渗油;②探针的动作应灵活无卡阻现象;③浮子和挡板的转动要灵活。永久磁铁在整个动作过程中不应触碰干簧触点的玻璃外壳。

4.2密封性能试验

将继电器充满清洁的变压器油,施加每平方厘米1.5公斤的压力,历时20分钟,继电器的各密封处不出现渗漏油和损伤。

4.3触点动作检验

①信号触点动作试验。轻瓦斯保护的动作值按产生的瓦斯气体的容积来整定:从瓦斯继电器顶盖上的放气阀注入气体,使继电器内聚集的气体数量达到整定值(250~300m)l时,信号触点可靠动作并发出信号。否则,可以调整重锤4的位置以满足要求。②跳闸触点动作试验:作用于跳闸的重瓦斯动作值按通过瓦斯继电器的油流速度整定。应与变压器的容量、接气体继电器的输油管直径、变压器冷却方式、瓦斯继电器型号对应。

现本钢大多采用QJ-80(输油管直径80mm)型号的瓦斯继电器。油流速度的整定范围在0.8-1.3m/s(继电器出厂时整定为1.0m/s)。

跳闸触点的动作值,以稳定的动作流速为准。继电器流速整定可在固定式流速校验台上进行检验,也可用流速测量尺进行测试。重复试验三次,每次试验值的误差不得超过0.05m/s。否则可以通过调节调节杆14来达到要求。

5对已安装瓦斯继电器的定期检验

①用打气法检查动作于信号回路(轻瓦斯)的正确性;②检查继电器上的箭头应指向油枕,按下探针检查动作于跳闸回路的正确性;③继电器连接管上的阀门应在打开位置;④瓦斯保护连接片投入应正确;⑤室外变压器的瓦斯继电器防水罩一定牢固;⑥继电器内充满油,接线端子处不应渗油;⑦手动按压探针2检查动作于跳闸回路(重瓦斯)的正确性。

6结束语

为了保证本钢电力变压器的正常运行,作为继保试验人员必须掌握瓦斯保护动作原因和正确的试验方法。在发生瓦斯保护动作时,依据动作现象,查明动作的原因,做出正确判断,以便有关领导及运行人员采取相应的措施进行处理。

参考文献

[1]张小平.变压器的运行检查维护和事故处理分析[J].科技与企业,2013(15).

继电器的保护原理范文篇3

关键词:油浸式变压器;瓦斯保护;处理方法;反事故措施

1.变压器瓦斯保护的范围

瓦斯保护的范围是变压器内部多相短路;匝间短路,匝间与铁心或外皮短路;铁心故障(发热烧损);油面下降或漏油;分接开关接触不良或导线焊接不良。

瓦斯保护的优点是不仅能反映变压器油箱内部的各种故障,而且还能反映差动保护所不能反映的不严重的匝间短路和铁心故障。此外,当变压器内部进入空气时也有所反映。因此,是灵敏度高、结构简单、动作迅速的一种保护。

其缺点是不能反映变压器外部故障(套管和引出线),因此瓦斯保护不能作为变压器各种故障的唯一保护。瓦斯保护抵抗外界干扰的性能较差,例如剧烈的震动就容易误动作。如果在安装瓦斯继电器时未能很好地解决防油问题或瓦斯继电器不能很好地防水,就有可能漏油腐蚀电缆绝缘或继电器进水而造成误动作。

2.瓦斯继电器的动作原理

瓦斯保护是变压器内部故障的主保护,对变压器匝间和层间短路、铁芯故障、套管内部故障、绕组内部断线及绝缘劣化和油面下降等故障均能灵敏动作。当油浸式变压器的内部发生故障时,由于电弧将使绝缘材料分解并产生大量的气体,从油箱向油枕流动,其强烈程度随故障的严重程度不同而不同,反应这种气流与油流而动作的保护称为瓦斯保护,也叫气体保护。

当变压器出现内部故障时,产生的气体将聚集在瓦斯继电器的上部,使油面降低。当油面降低到一定程度后,上浮筒便下沉,使水银接点接通,发出信号。如果是严重故障,油流会冲击挡板,使之偏转,并带动挡板后的连动杆向上转动,挑动与水银接点卡环相连的连动环,使水银接点分别向与油流垂直的两侧转动,两水银接点同时接通,使开关跳闸或发出信号。

常用的瓦斯继电器有两种:一是浮子式;二是挡板式。挡板式瓦斯继电器是将浮子式的下浮子改为挡板结构。两者的区别是,挡板式的挡板结构不随油面下降而动作,而是在油的流速达到0.6~1.0m/s时才动作,所以挡板式瓦斯继电器遇到油面下降或严重缺油时,不会造成重瓦斯误动跳闸。

3.瓦斯继电器收集气体判别故障

瓦斯继电器动作后,如果不能明确判别是不是变压器内部故障所致,就应立即收集瓦斯继电器内聚积的气体,通过鉴别气体的性质,做进一步判别。

一般将专用玻璃瓶倒置,使瓶口靠近瓦斯继电器的放气阀来收集气体。如果收集到的气体无色无味,且不能点燃,说明瓦斯继电器动作是油内排出空气所致。如果收集到的气体为黄色,且不易点燃,说明变压器的木质部分出现了故障;如果所收集的气体为淡黄色并带强烈臭味,又可燃烧,则表明是纸质部分故障;如果气体为灰色或黑色易燃气体,则为绝缘油故障。

判别气体是否可燃时,对室外变压器可直接打开瓦斯继电器的放气阀,点燃从放气阀排出的气体,若为可燃气体,沿气流方向将看到明亮的火焰。试验时应注意,为了确保安全,在油开始外溢前必须及时关闭放气阀。

从室内变压器收集的气体,应置于安全地点进行点燃试验。判别气体有颜色时动作必须迅速,否则颜色很快就会消失,从而得不到正确结果。

4.轻、重瓦斯保护动作的原因

(1)轻瓦斯保护动作的原因。变压器的轻瓦斯保护动作,一般作用于信号,以表示变压器运行异常,其原因主要是在变压器的加油、滤油、换油或换硅胶过程中有空气进入油箱。由于温度下降或漏油,油面降低。油箱的轻微故障,产生少量气体。轻瓦斯回路发生接地、绝缘损坏等故障处理的原则是停止音响信号。检查变压器的温度、音响、油面及电压、电流指示情况。通过第一项检查,如未发现异常,应收集继电器顶部气体进行故障判别。如果收集的气体为空气,值班人员将继电器内的气体排出,变压器可继续运行;如果为可燃气体,且动作频繁,则应先汇报领导,按命令处理。如果无气体,变压器也无异常,则可能是二次回路存在故障,值班人员应将重瓦斯由掉闸改投信号,并将情况报告有关负责人,待命处理。

(2)重瓦斯保护动作的原因。变压器的重瓦斯保护动作掉闸的原因是变压器内部发生严重故障,回路有故障,近区穿越性短路故障。

5.变压器瓦斯保护运行的一般规定

1)正常运行时,重瓦斯保护投入“跳闸”位置;轻瓦斯保护投入“信号”位置。

2)变压器运行中,瓦斯保护与差动保护不得同时退出。

3)变压器运行中,瓦斯继电器探针不得任意拨动,以免保护误动。

4)瓦斯保护运行中的检查项目

a)瓦斯继电器不漏油、渗油,阀门开启正确,油枕油位正常。

b)变压器呼吸器正常畅通。

5)进行下列工作时重瓦斯保护改投“信号”,工作结束后连续运行1小时,未出现误动现象(不包括轻瓦斯的正常反应)方可投入“跳闸”位置。

a)变压器滤油、补油、换硅胶。

b)处理呼吸器畅通。

6)进行下列工作时,重瓦斯改投“信号”,工作结束后即可投入“跳闸”位置。

a)瓦斯继电器及其二次回路作业。

b)变压器除采油样和瓦斯继电器上部放气阀放气外,在其它部位放气、放油。

c)开、关瓦斯继电器连接管上的阀门。

d)油泵及其管路检修后接入运行中变压器本体(接入本体后,试转一次)。

7)在地震预报期间,根据变压器的具体情况和气体继电器的抗震性能确定重瓦斯保护的运行方式。地震引起重瓦斯动作停运的变压器,在投运前对变压器及瓦斯保护进行检查试验,确认无异常后方可投入。

8)新安装或大修后的变压器投入运行,重瓦斯保护必须投入“跳闸”位置。

6.瓦斯保护动作的处理及反措

处理的原则是对变压器上层油温、外部特征、防爆喷油和各侧开关掉闸情况、停电范围等进行检查,如有备用变压器,应立即投入,并报告有关领导。收集气体判别故障:如果是内部故障,则不得试送电,应按规定拉开各侧开关,并采取安全措施,等待抢修。如果气体不可燃,而且表计无摆动,则可考虑试送电。如果瓦斯继电器内无气体,外部也无异常,则可能是瓦斯继电器二次回路存在故障,但在未证实变压器良好以前,不得试送电。重瓦斯跳闸,取气化验为可燃气体,应将变压器停电测绝缘。变压器未经检查、试验合格前不许再投入运行。

但有时瓦斯继电器会发生误动作,因此应采取一定的反事故措施:

将瓦斯继电器的下浮筒式改为挡板式,触点改为立式。这样可以提高重瓦斯动作的可靠性。瓦斯继电器引出线应采用耐油绝缘线。瓦斯继电器的引出线和通往室内的二次电缆应经过接线箱。在箱内端子排的两侧,引线应接在下面,电缆应接在上面,以防电缆绝缘被油侵蚀;引线排列应使重瓦斯跳闸端子与正极隔开。处理假油位时,注意防止瓦斯继电器误动。瓦斯继电器的端盖部分及电缆接线端子箱应有防雨措施。对新投入的瓦斯继电器的浮筒应作密封试验,在其运行中应进行定期试验。如果使用塑料电缆,应注意检查是否有被老鼠、白蚂蚁咬坏等情况。(作者单位:大唐长春第三热电厂)

参考文献:

[1]王晓莺.变压器故障与监测[M].北京:机械工业出版社.2005.

继电器的保护原理范文篇4

【关键词】220kV变电站;污闪;继电保护;动作分析;高频保护;单相故障

概述

继电保护装置是保障电力设备安全和电力系统稳定的最基本、最重要和最有效的技术手段。继电保护装置的正确动作关系到电力系统的安全稳定运行。消灭和减少继电保护的不正确动作是一项长期而艰巨的任务,除了认真执行规程和反思外,学习已有事故的处理方法和分析思路是非常有效的途径。

一、事故经过

2000年10月,某电力局的一座110kV变电站#1主变两侧开关因故动作跳闸。根据值班人员反映,当时是由于某10kV线路速断保护动作跳闸,重合成功后#1主变保护动作,跳开主变两侧开关。后经该局技术人员现场调试、检查时发现:

(1)1主变110kV复合电压闭锁过流保护回路的A相电流继电器(1LJ,DL-21C型)接点卡滞不能返回。

(2)110kV复合电压闭锁回路的电压继电器有一线圈断线(YJ),从而引起110kV复合电压继电器失压,常闭接点闭合,起动了110kV复合电压闭锁中间继电器YZJ,使到YZJ中间继电器的常开接点闭合,从而起动跳闸回路。

(3)另外,中央信号系统回路中的+XM正电源熔断器熔断使到开关跳闸时事故信号装置喇叭不响。通过更换110kV复合电压闭锁过流保护的电流、电压继电器及处理中央信号系统的电源熔断器后系统正常。经过试验合格,并送电成功。

二、事故的原因分析

通过该局技术人员的调试和综合事故现场的检查情况分析,该局技术人员一致认为造成主变复合电压过流保护误动作的原因是:电压继电器线圈断线致其常闭接点闭合,使启动回路处于预备状态,10kV线路故障引起电流继电器动作,由于电流继电器动作不能返回而使整个跳闸回路导通,经整定时间1秒后,跳主变两侧开关。造成电流继电器不能返回的原因:电流继电器动、静触点触头间有些错位(检验规程要求动断触点闭合时,动触点距静触点边缘不小于1.5mm),加上机械弹簧反作用力不足,造成继电器动作不能返回而导通跳闸回路。

造成电压继电器断线原因在于继电器线圈的导线较细,而且,又处于长期带电运行状态,较为容易引起断线。

1、变电站保护动作分析

事故引起变电站失压,后果严重。经事故现场检查,高压室出线电缆头短路引起变电站10kV上排Ⅰ,Ⅱ线F11,F20开关保护装置动作是正确的。由于10kV上排Ⅰ线F11开关辅助接点烧熔,造成跳闸线圈烧毁,故障电流无法切除,引起2号主变、3号主变10kV侧后备过流保护动作使10kV分段开关513,512跳闸。保护装置动作是正确的。而变电站110kVⅡ线124开关保护越级跳闸是错误的。分析微机录波图也证明了这点。

2、变电站110kV开关跳闸分析

10:39:30,在故障前0102s时110kV三相电压波形有些变形,幅值没变。在0103s时110kV三相电压正常,110kV南庄Ⅱ线124开关三相电流A相基本没变,B相电流118kA(已折合到10kV侧),C相电流213kA(已折合到10kV侧)。再经过0137s后三相电压电流恢复正常状态。10:39:34,开始时110kV三相电压波形、幅值没变。110kVⅡ线124开关三相电流:C相电流恢复正常、A相电流118kA(已折算到10kV侧)、B相电流213kA(已折算到10kV侧)。在013s后110kV三相电压正常,三相电流同时升到213kA(已折算到10kV侧),延时到717s。

从上述情况看:电流值为213kA未达到主变10kV侧后备过流保护动作定值。另从南郊变电站110kV南庄Ⅱ线124开关微机保护打印报告分析,在10:39:31到C相电流最大幅值折算到10kV侧的电流为21857kA。在这里2号、3号主变压器10kV侧后备过流整定值:动作值21965kA,216s跳10kV分段;3s跳主变压器变低。从故障开始到发展成三相电流同时升到213kA(已折算到10kV侧)的时间合计约12s。10kV上排高压室出线电缆头短路故障是发展性的,在10:39:30开始处于小波动直到10:39:43。110kV南庄Ⅱ线124开关微机保护打印报告的分析在10:39:43也就是短路故障持续了13s,A相电流最大幅值(折算到10kV侧)为51419kA,达到整定值,2号、3号主变压器10kV侧后备过流保护动作后,时间继电器的滑动接点216s将10kV分段开关512,513跳闸(合计时间为1516s)。时间继电器的终止接点未滑到3s时(合计时间为16s)已由变电站110kV南庄Ⅱ线124开关跳闸。电站110kV124开关微机保护WXBO11型装置原理及打印报告分析打印报告显示在15590ms3ZKJCK阻抗距离Ⅲ段出口跳闸。在0采样点后2个周期,电流较小,阻抗不在Ⅲ段范围,在9340采样点后电流比前面增大许多,计算阻抗处于临界Ⅲ段,反复计算。当先判断在Ⅲ段内,后又到Ⅲ段外时,Ⅲ段延时清零。在计算结果为阻抗在Ⅲ段内时,延时出口将重新计时,造成在15590msⅢ段出口跳闸。

从微机保护原理分析保护动作本身不存在问题,只有重新核算本线路保护整定值,原微机保护WXBO11型的距离保护整定值:相间距离Ⅲ段电抗分量定值XX3为6168,而阻抗特性电阻分量的大定值RL也为6168。根据厂家整定要求,RL值用于启动元件动作后的正常Ⅰ,Ⅱ,Ⅲ段及静稳破坏检测的Ⅲ段阻抗元件,RL值既要考虑反应电阻的能力,又应躲过最大负荷时的最小阻抗。

三、事故所暴露的问题

1、试验人员在预防性试验时责任心不强,每年的预试只重视对单只继电器的技术数据及整组进行试验,疏忽了对继电器机械部分的检查。

2、此次事故也暴露了“四统一”继电保护存在不少的缺陷,如接点较多,当某一接点出现问题时,容易引起误动作。长期带电运行的继电器容易损坏。

3、加强继电保护整定的管理。110kV微机保护整定工作是一项细致和认真的工作,对于定值单中的每一个项目都要准确计算认真复核,确保不能出错。本次故障就是由于RL值整定不正确引起的。

4、加强对开关机构维护和选型。跳闸开关F11由于辅助接点维护不到位,运行中产生损坏未及时发现,引起事故扩大。

四、今后应采取的措施

1、加强对试验人员的责任心教育,工作中必须认真、细致。

2、继电器试验时必须严格按规程要求检查机械部分,并在每年的试验报告中反映检查结果情况。以后对DL-20C系列继电器的机械部分须重点检查以下几个方面:

(1)检查舌片与电磁铁的间隙。舌片初始位置时的角度α应在77°~88°范围内;(2)调整弹簧。弹簧的平面要求应与轴严格垂直;弹簧由起始角转至刻度盘最大位置时,层间间隙应均匀;(3)检查并调整触点。触点应清洁,无受熏或烧焦等现象。动断触点闭合时,触点应正对动触点距静触点边缘不小于1.5mm,限制片与接触片的间隙不大于0.3mm。

3、运行人员对运行中的闭锁回路继电器与出口中间继电器的位置情况进行定期检查,发现异常,立即处理,使事故防范于未然。

4、今后在对继电保护装置进行技改或新设计时,建议采用微机保护,减少因触点问题而造成的误动作事故的发生。

继电器的保护原理范文

Keywords:highimpedancedifferentialprotectionratioerror

论文关键词:高阻抗差动保护匝数比

论文摘要:本文阐述了大型电动机高阻抗差动保护原理及整定原则和整定实例。分析了CT匝数比误差对高阻抗差动保护的影响,并介绍了匝数比误差的测量方法。

1概述

高阻抗差动保护的主要优点:1、区外故障CT饱和时不易产生误动作。2、区内故障有较高的灵敏度。它主要作为母线、变压器、发电机、电动机等设备的主保护,在国外应用已十分广泛。高阻抗差动保护有其特殊性,要保证该保护的可靠性,应从CT选型、匹配、现场测试、保护整定等多方面共同努力。现在我国应制定高阻抗差动保护和相应CT的标准,结合现场实际情况编制相应的检验规程,使高阻抗差动保护更好的服务于电网,保证电网安全。

2高阻抗差动保护原理及定值整定原则

2.1高阻抗差动保护的动作原理:

(1)正常运行时:原理图见图1,I1=I2ij=i1-i2=0.因此,继电器两端电压:Uab=ij×Rj=0.Rj-继电器内部阻抗。

电流不流经继电器线圈,也不会产生电压,所以继电器不动作。

(2)电动机启动时:原理图见图2,由于电动机启动电流较大,是额定电流的6~8倍且含有较大的非周期分量。当TA1与TA2特性存在差异或剩磁不同,如有一个CT先饱和。假设TA2先饱和,TA2的励磁阻抗减小,二次电流i2减小。由于ij=i1-i2导致ij上升,继电器两端电压Uab上升。这样又进一步使TA2饱和,直至TA2完全饱和时,TA2的励磁阻抗几乎为零。继电器输入端仅承受i1在TA2的二次漏阻抗Z02和连接电缆电阻Rw产生的压降。

为了保证保护较高的灵敏度及可靠性,就应使Uab减少,也就是要求CT二次漏阻抗降低。这种情况下,继电器的整定值应大于Uab,才能保证继电器不误动。

(3)发生区内故障:原理图见图3,i1=Id/n(n-TA1电流互感器匝数比)ij=i1-ie≈i1Uab=ij×Rj≈i1Rj此时,电流流入继电器线圈、产生电压,检测出故障,继电器动作。由于TA1二次电流i1可分为流向CT励磁阻抗Zm的电流ie和流向继电器的电流ij。因此,励磁阻抗Zm越大,越能检测出更小的故障电流,保护的灵敏度就越高。

2.2高阻抗差动保护的整定原则及实例

(1)整定原则:

a)、保证当一侧CT完全饱和时,保护不误动。

式中:U-继电器整定值;US-保证不误动的电压值;IKMAX-启动电流值;

b)、保证在区内故障时,CT能提供足够的动作电压:

Uk≥2US(3)

式中:Uk-CT的额定拐点电压。

CT的额定拐点电压也称饱和起始电压:此电压为额定频率下的正弦电压加于被测CT二次绕组两端,一次绕组开路,测量励磁电流,当电压每增加10%时,励磁电流的增加不能超过50%。

c)、校验差动保护的灵敏度:在最小运行方式下,电动机机端两相短路时,灵敏系数应大于等于2。

式中Iprim-保证继电器可靠动作的一次电流;n、Us-同前所述;m-构成差动保护每相CT数目;Ie-在Us作用下的CT励磁电流;Iu-在Us作用下的保护电阻器的电流;Rs-继电器的内阻抗。

(2)、整定实例:

电动机参数:P=7460KW;Ir=816A。CT参数:匝数比n=600;Rin=1.774Ω;Uk=170V。

CT二次侧电缆参数:现场实测Rm=4.21Ω。

差动继电器(ABB-SPAE010)参数:整定范围0.4-1.2Un;Un=50、100、200可选;Rs=6K。

计算Us:US=IKMAX(Rin+Rm)/n=10Ir(Rin+Rm)/n=10×816(1.774+4.21)/600=81.38V

选取Us=82V

校验Uk:Uk=170VUs在85V以下即可满足要求。

确定继电器定值:选取Un=100;整定点为0.82;实际定值为82V。

校验灵敏度:通过查CT及保护电阻器的伏安特性曲线可得在82V电压下的电流:Ie=0.03AIu=0.006AIprim=n(Us/Rs+mIe+Iu)=600(82/6000+2×0.03+0.006)=47.8A。

由此可见,高阻抗差动保护的灵敏度相当高,这也是该保护的主要优点之一。

3高阻抗差动保护的应用

3.1高阻抗差动保护在应用中除了应注意:

(1)、CT极性及接线应正确;(2)、二次接线端子不应松动;(3)、不应误整定;(4)、CT回路应一点接地等。还应注意:(1)、CT二次应专用;(2)、高阻抗差动保护所用CT是一种特别的保护用CT。为了避免继电器的误动作,对CT有三个要求:励磁阻抗高、二次漏抗低和匝数比误差小。高阻抗差动保护用的CT设计要点是:依据拐点电压及拐点电压下的励磁电流来确定铁芯尺寸。对于高阻抗差动保护用CT的特性匹配至关重要,在实际选用时应采用同一厂家,同一批产品性相近、匝数比相同的CT。

3.2下面主要探讨CT匝数比误差对高阻抗差动保护的影响

(1)匝数比n为二次绕组的匝数与一次绕组匝数的比值。匝数比的误差εt定义如下:

εt=(n-Kn)/Kn(6)

式中,Kn-标称电流比。

国外标准中规定此种CT的匝数比误差为±0.25%。

(2)匝数比误差要小:

当电动机启动时(见图2),电流互感器TA2未饱和,CT的二次电流接近于匝数比换算得来的数值,这是由于TA2未饱和时励磁阻抗较高的原因。一般情况下高阻抗差动保护用CT励磁阻抗为几十千欧姆的数量级。如果匝数比的分散性很大,TA1和TA2的二次电流i1和i2不能互相抵消,该差值电流ij流经继电器线圈,即成为产生误动作的原因。

(3)、匝数比误差规定为±0.25%,对于不同匝数比CT不尽合理。匝数较大CT容易满足该规定并且能保证保护不发生误动作。匝数较小CT即使满足该规定,在电动机启动时的差电压也较大,足以造成保护误动作。

下面列举两个例子:

a).两侧CT匝数比均满足±0.25%。假设:n1=3609(正误差);n2=3591(负误差)。

匝数比误差产生的不平衡电流:ij=(10×3600/3591-10×3600/3609)=0.05A

继电器两端不平衡电压:Uj=ij×Rs=0.05×6000=300V

Uj大于继电器整定值,保护在这种情况下将不可避免的发生误动作。

b).两侧CT匝数比相对误差满足±0.25。假设:n1=3609;n2=3600。

匝数比误差产生的不平衡电流:

ij=(10×3600/3600-10×3600/3609)=0.025A

继电器两端不平衡电压:Uj=ij×Rs=0.025×6000=150V

Uj小于继电器整定值,可满足工程要求。

例2:所有参数与整定计算实例相同。

a).两侧CT匝数比均满足±0.25%。

设:n1=601(正误差);n2=599(负误差)。

匝数比误差产生的不平衡电流:

Uj远大于继电器整定值(82V),保护将发生误动作。

b).两侧CT匝数比相对误差满足±0.25%,假设:n1=601n2=600

匝数比误差产生的不平衡电流:

Uj=ij×Rs=0.0226×6000=135V

Uj仍大于继电器整定值,保护将发生误动作。

通过上述两例足以说明对于高阻抗差动保护CT选择的苛刻条件,选择时应遵守CT匝数比误差相近的原则。建议在整定原则中增加继电器整定电压应大于由于匝数比误差产生的差电压,以保证高阻抗差动保护的可靠性。

3.3匝数比误差的测量

测量的方法有两种:

第一种:在CT二次侧短路状态下,测量流经额定一次电流i1时的比值差f1,设此时励磁电流为i0,则f1=-εt-i0/i1

二次回路连接与二次绕组阻抗相等的负荷,在额定一次电流的1/2电流下测量比值差f2,这时仍设励磁电流为i0,则f2=-εt-2i0/i1

匝数比误差为:εt=f2-2f1

第二种方法:在测量CT伏安特性的同时测量一次绕组的电压。

继电器的保护原理范文篇6

希望给予同行带来一定的参考价值。

关键词:电力系统继电保护技术与应用

中图分类号:TM7文献标识码:A文章编号:

前言

当今,电力已作为现代社会的主要能源,与国民经济建设和人民生活有着极为密切的关系,然而供电不稳定,特别是大面积停电事故所造成的经济损失和社会影响是十分严重的。如何正确应用继电保护技术来遏制电气故障,提高电力系统的运行效率及运行质量已成为迫切需要解决的技术问题。

1继电保护发展现状

上世纪50年代,我国工程技术人员创造性地吸收、消化、掌握了国外先进的继电保护设备性能和运行技术,建成了一支具有深厚继电保护理论造诣和丰富运行经验的继电保护技术队伍。对全国继电保护技术队伍的建立和成长起了指导作用。阿城继电器厂引进消化了当时国外先进的继电器制造技术,建立了我国自己的继电器制造业。因而在60年代中我国己建成了继电保护研究、设计、制造、运行和教学的完整体系。这是机电式继电保护繁荣的时代,为我国继电保护技术的发展奠定了坚实基础。

2继电保护的基本原理

继电保护主要利用电力系统中元件发生短路或异常情况时的电气量(电流、电压、功率、频率等)的变化,构成继电保护动作的原理,也有其他的物理量,如变压器油箱内故障时伴随产生的大量瓦斯和油流速度的增大或油压强度的增高。大多数情况下,不管反应哪种物理量,继电保护装置都包括测量部分(和定值调整部分)、逻辑部分、执行部分。

3电力系统中继电保护的配置与应用

3.1继电保护装置的任务

继电保护主要利用电力系统中原件发生短路或异常情况时电气量(电流、电压、功率等)的变化来构成继电保护动作。继电保护装置的任务在于:在供电系统运行正常时,安全地。完整地监视各种设备的运行状况,为值班人员提供可靠的运行依据;供电系统发生故障时,自动地、迅速地、并有选择地切除故障部分,保证非故障部分继续运行;当供电系统中出现异常运行工作状况时,它应能及时准确地发出信号或警报,通知值班人员尽快做出处理。

3.2继电保护装置的基本要求

(1)选择性

当供电系统中发生故障时,应断开距离故障点最近的断路器,以保证系统中其它非故障部分能继续正常运行。

(2)灵敏性

保护装置灵敏与否一般用灵敏系数来衡量。在继电保护装置的保护范围内,不管短路点的位置如何、不论短路的性质怎样,保护装置均不应产生拒绝动作;但在保护区外发生故障时,又不应该产生错误动作。

(3)速动性

保护装置应尽可能快地切除短路故障。缩短切除故障的时间以减轻短路电流对电气设备的损坏程度,加快系统电压的恢复,从而为电气设备的自启动创造了有利条件,同时还提高了发电机并列运行的稳定眭。

(4)可靠性

保护装置不能满足可靠性的要求,反而会成为扩大事故或直接造成故障的根源。为确保保护装置动作的可靠性,必须确保保护装置的设计原理、整定训算、安装调试正确无误;同时要求组成保护装置的各元件的质量可靠、运行维护得当、系统简化有效,以提高保护的可靠性

3.3保护装置的应用

继电保护装置广泛应用于工厂企业高压供电系统、变电站等,用于高压供电系统线路保护、主变保护、电容器保护等。高压供电系统分母线继电保护装置的应用,对于不并列运行的分段母线装设电流速断保护,但仅在断路器合闸的瞬间投入,合闸后自动解除。

另外,还应装设过电流保护,对于负荷等级较低的配电所则可不装设保护。变电站继电保护装置的应用包括:①线路保护:一般采用二段式或三段式电流保护,其中一段为电流速断保护,二段为限时电流速断保护,三段为过电流保护。②母联保护:需同时装设限时电流速断保护和过电流保护。③主变保护:主变保护包括主保护和后备保护,主保护一般为重瓦斯保护、差动保护,后备保护为复合电压过流保护、过负荷保护。④电容器保护:对电容器的保护包括过流保护、零序电压保护、过压保护及失压保护。

4变电站微机保护配置的应用实例

2006年,某公司成功将一个传统电磁式继电器保护的35kV变电所改造成微机保护装置系统的终端变电站。

(1)系统保护装置及监控系统

①系统保护装置。线路保护装置、主变保护装置——可完成变压器的主、后备保护、综合保护装置、线路保护装置、电容器保护装置、备用电源自投装置、小电流接地检测装置、综合数据采集装置。

②监控系统的基本功能——数据采集、控制操作、画面制作、监视显示、事故处理、制表与打印。

(2)系统设计时的注意问题

①由于控制和保护单元都是采用微机装置,故一些必要的开关量和模拟量应从开关柜或户外设备引至微机采集、保护屏。根据控制和保护要求的不同,输入的量也不同。

②开关柜与微机装置之间的端子接线较简单,大量的二次接线在微机采集控制单元和保护单元内部端子连接。传统的继电保护整定计算结果不能直接输入到计算机,须转换为计算机整定值。

(3)应用效果

①该变电所投产运行后,除开始操作人员对微机系统不熟悉原因,使用过控制保护单元的紧急手动按钮外,基本上都在微机装置和监控计算机上操作,整个系统运行良好。

②线路及站内设备的继电保护均采用计算机采集、运算、判断,反应灵敏、迅速,在设备或线路有故障时可靠切除故障点。

③各种设备微机保护的配置齐全完善,能完美解决继电保护短线路及运行方式变化大时的各级保护的配合问题,因此该站正常运行后可靠性比原来显著提高,基本杜绝了越级跳闸的发生。

5继电保护装置的发展,局限性及其现阶段的应用范围

继电保护原理的发展是从简单的电流保护逐步向复杂的距离保护和高频保护过度的。继电保护装置的发展则依赖于构成继电保护装置元器件技术的发展。其发展大致经历了四个阶段,即从电磁型、晶体管型、集成电路型到微机型保护的发展历程。传统的电磁和电磁感应原理的保护存在动作速度慢、灵敏度低、抗震性差以及可动部分有磨损等固有缺点。晶体管继电保护装置也有抗干扰能力差、判据不准确、装置本身的质量不是很稳定等明显的缺点。

继电保护系统在电力系统中起着开关或警报的作用,我们可以将该原理称为开关原理。现阶段,我们习惯性的将继电保护系统认定为高压、低压的电力输电系统的保护系统。然而,继电保护的这一开关原理已经广泛应用于大部分的电路、电器、电子等高压、低压、强电、弱电等技术领域。因为每个继电保护系统所要保护的对象不同,所以需要采用的保护装置也要相应的加以选择,以达到功能与成本的匹配。

6小结

除上述几点外,要保证继电保护专业的安全运行,还有很多基础的工作要做,必须在继电保护的现场运行,维护,校验,规程编制上狠下工夫,才能有效地保证继电保护和安全自动装置的正确动作,提高其正确动作率。

参考文献

继电器的保护原理范文篇7

[论文摘要]介绍湛江发电厂脱硫增压风机ct饱和引起各种电流继电器误动的原因,分析电流互感器饱和对电磁式电流继电器、晶体管或集成电路构成的模拟式电流继电器和微处理机构成的数字式电流继电器动作行为的影响。论述几种防止和抗御电流互感器饱和的方法和对策,如在较高一级的电压等级中的供电侧采取分列运行的方式以减少短路电流等。给出选择合适的保护装置和在新建系统中选择电流互感器的一些原则。

一、引言

2008年,湛江发电厂出现过厂用大容量电动机(脱硫增压风机)启动时差动保护误动作的情况。究其原因,除个别是因为整定值的问题外,大多数是因电流互感器特性不理想甚至饱和而导致的。

众所周知,设计规程中对电流互感器的选型有严格的规定,要求保护用的电流互感器在通过15倍甚至是20倍额定电流的情况下,误差不超过5%或10%,即不出现饱和。而上面提及的出现差动保护误动的情况,无一例外地都选用了保护级的电流互感器。经过对我厂的大容量电动机起动电流的核算,最大容量的电动机启动时电流大概是开关额定电流的3~5倍,远达不到电流互感器额定电流的15倍。那为什么差动保护还会因为电流互感器饱和而误动呢?以下是笔者对问题的一点思考。

二、已建成厂用系统中防止ta饱和的方法与对策

(一)限制短路电流

在已建成厂用系统中可在较高一级的电压等级中就采取分列运行的方式以限制短路电流。分列运行后造成的供电可靠性的降低可通过备用电源自动投入等方式补救。在新建系统中短路电流过大可采取串联电抗器的做法来限制短路电流。

(二)增大保护级ta的变比

不能采用按负荷电流的大小确定保护级电流变比的方法,必须用保护安装处可能出现的最大短路电流和互感器的负载能力与饱和倍数来确定ta的变比。增大了保护级ta的变比能够有效的解决电流互感器特性不理想甚至饱和。湛江电厂脱硫增压风机6kv开关采用增大保护级ta的变比彻底解决了差动保护误动的隐患。但增大了保护级ta的变比后会给继电保护装置的运行带来一些负面影响,主要是不利于ta二次回路和继电保护装置的运行监视。

(三)减小电流互感器的二次负载

1.选用交流功耗小的继电保护装置。电磁型的电流差动继电器的交流电流功耗每回路可达8va,而微机型继电器(如mdmb1系列)的交流电流功耗每回路仅0.5va,相差一个数量级,应选用交流功耗小的继电保护装置。

2.尽可能将继电保护装置就地安装。ta的负载主要是二次电缆的阻抗,将继电保护装置就地安装,大大缩短了二次电缆长度,减小了互感器的负担,避免了饱和。另外,就地安装后,还简化了二次回路,提高了供电可靠性。就地安装方式对继电保护装置本身有更高的要求,特别是在恶劣气候环境下运行的能力和抗强电磁干扰的性能要好。

3.减小ta的二次额定电流。由于功耗与电流的平方成正比,将二次额定电流从5a降至1a,在负载阻抗不变的情况下,相应的二次回路功耗降低了25倍,互感器不容易饱和。

减小了ta的二次额定电流也会对继电保护装置产生负面影响,二次电流减小后,必须提高继电器的灵敏度,而灵敏度和抗干扰能力是一对矛盾。对于就地安装的继电保护装置,由于二次电流电缆的长度很短,现场的电磁干扰水平又比较高,仍以选用二次额定电流为5a的互感器为好。

(四)采用抗饱和能力强的继电保护装置

1.采用对电流饱和不敏感的保护原理或保护判据。例如,采用相位判别原理的继电器比采用幅值判别原理的继电器的抗ta饱和的性能要好,因为即使在严重饱和状态,正确地恢复电流的相位还是比较容易的;又如,采用负序过电流判据比采用相过电流判据的抗饱和性能要好,因为饱和状态下剩余电流的负序分量相对于灵敏的负序电流整定值是足够大的。当然,负序电流保护存在着ta二次回路断线时容易误动作、三相对称故障时会拒动、不易整定配合的缺点,要增加附加判据来克服。

2.采用对ta饱和不敏感的数字式保护装置。如前所述,瞬时值判别比平均值判别或有效值判别的抗ta饱和的性能要好。对于带时限的保护,电流的非周期分量对继电器的动作正确性和准确性的影响不大,采用全电流判别比采用工频分量判别的抗ta饱和性能要好。

3.有效地利用电流不饱和段的信息。ta在电流换向后的一段时间内不饱和,在短路开始的1/4周期内也不饱和,可以有效地加以利用。采用快速保护判据,在电流饱和前就正确地做出判断(例如高阻抗电流差动继电器)是一种典型的抗ta饱和做法。采用贮能电容或无源低通滤波器对饱和电流波形进行削峰填谷以缩小电流波形的间断角也是一种简单有效的办法。

三、结语

为了避免差动保护的电流互感器大容量电动机启动时因电流过大出现饱和而导致差动保护误动作,除了在设备选型上要确保选用容量足够的保护级电流互感器外,还可根据电流互感器的伏安特性曲线和现场实测的电流互感器二次回路负载阻抗计算出电流互感器的饱和点,以此推算出在最大可能出现的穿越电流作用下,电流互感器是否会饱和以及差动保护是否会误动作。如计算结果显示电流互感器确会因较大穿越电流而饱和,则应更换更大容量的电流互感器,或将电流互感器二次回路的电缆截面加粗,以减小二次负载的阻抗,保证差动保护的可靠性。湛江电厂脱硫增压风机6kv开关通过增大保护级ta的变比彻底解决了差动保护误动的隐患,并且正在运行的断路器和继电保护装置没有更换掉因此兼顾了经济性。

继电器的保护原理范文1篇8

关键词:PLC动作逻辑错误;主变跳闸;事故分析

中图分类号:TM73文献标识码:A文章编号:1009-2374(2013)31-0126-03

随着我国经济的不断,电力行业也得到了非常大的发展,各种超高压和高压电网相继被建设出来,大容量变压器使用也越来越频繁,在变压器的使用过程中,冷却器是一个非常重要的元件,由于变压器和冷却器一般都安装在室外,为了保证变压器运行的正常,首先就需要对冷却器的控制回路的质量进行保证。在砚山电网运行的过程中,由于PLC动作逻辑错误导致了一起电力安全事件产生。对电网的运行造成了非常大的影响,文章主要对跳闸事故的原因进行分析。

1案例简介

在5月19日,砚山变发生了一起由于#2主变非电量保护误动引起主变跳闸,造成一起四级电力安全事件。在事件发生前文山电网经500kV砚山变、500kV砚山变#2主变、220kV文山变与红河电网220kV南湖变、500kV通宝变、500kV红河变形成电磁环网运行。500kVⅠ、Ⅱ组母线运行,#2主变运行,砚崇甲线、红砚甲线、红砚乙线运行,5711、5712、5713、5721、5722、5752、5753断路器运行;#1主变检修,5731、5732断路器冷备用(如图1所示)。#1站用变低压侧401断路器断开,413合位,备用站用变低压侧403断路器供0.4kVⅠ段负荷;#2站用变低压侧402断路器运行供0.4kVⅡ段,423断路器分位0.4kV站用系统双桥备自投±装置正常投入。

2现场检查情况

(1)保护动作情况。对#2主变保护的动作报告和故障录波数据进行分析,变压器保护只有冷控失电保护出口产生了跳闸,而其他的两套变压器电气量保护均没有产生动作,同时电流、电压量均处于相对正常的范围内,没有产生突变的情况,也没有出现故障电流和电压,主变“冷控失电保护”是在收到了“冷却器全停跳闸信号”的开入后才出现跳闸的,检查变压器本体也没有发现异常情况,表明变压器没有发生故障。(2)#2变压器非电量保护检查情况。对#2主变冷却器控制箱上的PLC控制器检查时发现,在面板显示17点32分发“绕组温度高跳闸”信号,之前一直在发“绕组温度高”信号,与后台核对发现PLC时间有29分30秒的误差,发“绕组温度高跳闸”的时间正是主变跳闸的时间。

3事故原因分析

(1)PLC控制器厂家设计的非电量保护动作逻辑程序有比较大的问题存在,将变压器“油温高、绕组温度高和冷却器全停”三种非电量保护的出口设计为启动同一只出口继电器,而设计的初衷是只将变压器PLC控制器中“冷却器全停”的出口接点引入变压器的非电量保护装置实现跳闸,因此,为了设计实现“冷却器全停”跳闸,将“油温高、绕组温度高”也引入到变压器非电量保护装置,造成本身不需要通过PLC控制器跳闸的“油温高和绕组温度高”非电量保护通过“冷却器全停”的跳闸开入回路而误动跳闸。(2)PLC装置温度采集存在非常大的误差,现场温度计显示为78℃,PLC装置采集到温度为115℃,达到了设计的动作定值。(3)设计人员没能有效识别装置功能,导致出现了设计错误的情况。另外厂家未能有效提供设备原理解释图,导致施工、验收、定检、运维时都没有及时发现设计中存在的错误问题。

4变压器冷却器控制回路的分析和整改

4.1冷却器全停保护的工作原理

4.1.1变压器上的温度计(绕组温度、上层油温)将温度信号经温度变送器转成温度测量电信号传送到冷控装置的A/D变换插件供冷控装置使用,同时温度计还送出不同温度值来作为动作接点信号,并把信号传送给冷控装置和非电量保护装置进行使用。对于需要延时的非电量信号,需要由装置经过定值设定的延时后才可以启动装置的跳闸继电器,而不是使用直接跳闸的非电量信号来直接启动装置的跳闸继电器。

4.1.2冷却器全停开入量首先由冷控箱送到主变端子箱,然后再送到非电量保护装置,一共分成四路分别加到1SJ(1h延时继电器)、2SJ(20min延时继电器)、K1信号继电器、1h延时跳闸启动回路(即PLC故障1h延时时间继电器触点“冷却器全停”连接片出口继电器跳变压器三侧断路器),如图2所示:

4.1.3冷控装置发出的跳闸信号是由继电器KA11的动合接点819、821经X∶119和X∶129送到非电量保护装置。经8FD的1(回路编号01)、15(回路编号05)、16、17端子起动重动继电器J1A、J1B、J1C和信号继电器XJ1A、XJ1B、XJ1C。继电器J1A、J1B、J1C的开出量作为冷却器全停延时跳闸的开入量,非电量保护装置进行逻辑判断和延时处理,满足条件时,由继电器YJ1给出跳信号,经8LP9起动跳闸继电器TJ,再由跳闸继电器TJ的动合触点接通断路器跳闸回路,跳开变压器三侧断路器。信号继电器XJ1A、XJ1B、XJ1C给出的信号送到后台监控、故障录波等。

4.2变压器冷却器控制回路的整改措施

4.2.1砚山变#1、#2主变冷却器PLC控制器的动作逻辑进行整改,具体方案为将PLC控制器中的“油温高和绕组温度高”保护动作后均设计为仅发信号,只保留“冷却器全停”保护动作后启动KA11继电器,通过KA11继电器的出口接点开入到变压器非电量保护装置实现出口跳闸。

4.2.2冷却器全停开入量(冷控失电延时跳闸)由冷控箱送到非电量保护装置RCS-974,油温高(75℃)开入量由变压器端子箱送到非电量保护装置RCS-974。冷却器全停保护的时间延时及油温高闭锁等逻辑判断功能在非电量保护装置中实现,条件满足时由非电量保护发出跳闸脉冲,跳开主变三侧断路器。不存在因冷却器工作电源消失造成冷却器全停保护误动作跳主变三侧断路器的隐患。如图3

所示:

5结语

变压器冷却器的故障对变压器的正常运行一直有着非常大的影响。目前来说,大型的变压器强迫油循环冷却系统的设计的技术已经非常的成熟,但是在实际的使用过程中,各个厂家生产的型号或者部分区域的设计情况和实际的情况不是很一致,对于这些问题都需要进行详细的分析,找出出现问题的原因,并对其进行改进,在本文中出现的电网事故,主要是因为PLC接线错误导致出现了主变跳闸的事故,通过把PLC控制器中的“油温高和绕组温度高”保护动作后设计为仅发信号,只对“冷却器全停”进行保留,把冷控箱送到非电量保护装置RCS-974,油温高(75℃)开入量由变压器端子箱送到非电量保护装置RCS-974。在非电量保护装置中实现冷却器全停保护的时间延时及油温高闭锁等逻辑判断功能。且在对电网进行整改后,运行一切正常。所以在对冷却器的回路进行控制的过程中,一定要根据实际的情况对回路进行改进,提高冷却控制回路的管理力度,从而来保证变压器的正常运行。

参考文献

[1]李世辉,张健,马金.SFP-750000/50型变压器冷却器控制方案优化改造[J].河北电力技术,2012,(4).

[2]彭振利.变压器冷却器电源自动切换回路分析与改进[J].科技资讯,2013,(5).

[3]陈挺.浅谈变压器冷却装置功能及控制方法[J].机电信息,2010,(12).

继电器的保护原理范文

关键词:继电保护;连环性;隐蔽性

继电保护是一门综合性的学科,它集数学、电子、电力、通讯等于一体,同时也是一门实践性很强的技术,继电保护问题既需要科学的理论,也需要处理工程问题的技巧。本人立足实践,从事继电保护10多年,发现了许多问题,积累了一些经验,现和大家一起探讨。

1案例一

某110kv变电站110kv194断路器在热备用状态下重合。

1.1事故经过

×年×月×日,天气阴雨连绵,某110kv变电站110kv194断路器在热备用状态下重合,保护装置重合闸灯点亮,重合闸压板在合位,六氟化硫断路器储能电机在不停的打压。根据故障现象,首先排除断路器机构偷合的可能性,应该从保护的动作逻辑去考虑问题。

1.2原因分析

(1)重合闸压板打在投的位置,给开关重合闸提供了可能。运行规程规定热备用的断路器是不允许投重合闸的,运行部门管理不善。忘记退掉了。

(2)保护装置重合闸逻辑存在缺陷,没有采用“不对应”原理,采用的是只监视twj状态,即twj断开充电。正确的做法是采用合后继电器的动合触点与twj的动合触点串联。其实在上述原理下,若先给保护装置电源,后给断路器控制电源,重合闸同样会出口。

(3)直接原因为六氟化硫断路器储能限位开关靠近背档板,雨水渗了进去,致使接点接触不良,断路器发生控制回路断线,twj由合变分,保护装置充电,在经过一段时间,控制回路恢复正常,twj由分变合,断路器发生重合。

(4)储能限位开关接点接触不良,此时拌由储能电机打压应由过流过时继电器闭锁控制回路,经检查继电器损坏。

1.3经验教训

从这个案例分析原因中可以看出,如果雨水进不到断路器机构内,断路器储能限位开关接点就不会接触不良,即使接点接触不良,若此接点和合后继电器的动合触点串联,重合闸就不会出口,或者过流过时继电器动作重合闸也不会出口。即使重合闸出口,若运行人员不投保护重合闸压板,断路器也不会合闸,所以它们之间存在着连环性。隐蔽性则体现在:其一,保护和断路器厂家设计上的缺陷,保护人员不容易发现,其二,保护人员对保护装置校验的很多,却忽略了对开关机构内继电器定值的校验。所以作为一名继电保护工作者,我们平时应该把工作中的每一个环节都做好,不留死角。对机构内的过流过时继电器做好校验工作,还有防跳和非全相继电器。保护和开关厂家在设计方面多加考虑,避免类似的情况发生。加强运行人员的责任心,加强运行人员理论水平的提高。

2案例二

某110kv变电站全站失电。

2.1事故经过

本站110kv两趟进线,桥接线,主变高压侧开关和进线共用开关。某日保护人员在主变保护屏后测试110kvi母电压。发生110kvi母pt失压,备自投动作,主供跳开,备供未合,全站失电。

2.2原因分析

(1)二次电压线a630凤凰端子排扣反。不动时与下面端子排b630还有一定间隙,此时电压正常,当测试a630时,由于表笔线对a630凤凰端子排的压力及晃动和b630发生短路,二次空气开关跳闸,110kvi母pt失压。首先排除了万用表没有问题,对端子排仔细检查发现扣反。

(2)有流闭锁定值设置过大,此时负荷较轻,备自投没有被闭锁住。

(3)跳主供开关的线接在手跳回路中,手跳把备自投给闭锁掉了,致使备供没有合上,全站失电。

2.3经验教训

从这个案例分析原因中可以看出,如果凤凰端子排没有扣反,pt就不会失压,即使pt失压,还有电流把关,备自投也不会动作,即使备自投动作,被供开关合上,全站也不会失电,可见它们存在着连环性。隐蔽性则体现在:其一,端子排扣反,平时肉眼是看不出来的,其二,定值是定值管理人员下发的,他们不下现场,现场实际负荷电流的大小只有保护人员才知道。所以作为一名继电保护工作者平时应加强对基建验收的把关,根据继电保护二次回路验收规范。用摇表对二次回路的绝缘测试合格。定值管理人员应加强对定值审核力度,定值大小要结合现场实际负荷情况下发。现场继电保护人员应该对保护进行整组传动,对二次回路的原理有比较深入的了解,坚决消除“重装置,轻回路”的错误思想。

3案例三

某220kv变电站220kv东母线失灵保护动作。

3.1事故经过

×年×月×日,某220kv变电站220kv出线243双套纵联保护b相动作,b相断路器跳闸,重合闸动作于永久性故障,243断路器三相跳闸。由于b相故障电流依然存在,220kv母差失灵保护动作跟跳243断路器,随后跳开母联200断路器,最后跳开东母所有出线间隔,造成220kv东母失电。

3.2原因分析

(1)本间隔防跳采用的是机构内防跳,即电压型防跳,防跳的关键在于辅助开关常开接点转换时的时间要大于防跳继电器的动作时间,以保证防跳继电器有足够的时间吸合。但实际辅助开关常开接点转换时的时间30ms小于防跳继电器的动作时间为50ms。

(2)其中有一套保护系统重合闸时脉宽为120ms,大于断路器合闸时间和断路器合分操作时辅助开关转换时间之和,在断路器第二次分闸后依然存在合闸脉冲信号。由于防跳继电器的动作时间大于辅助开关合分转换时间,防跳继电器带电时间过短不能有效吸合,导致防跳回路不起作用不能切除合闸信号,断路器再次合闸。

(3)此断路器液压机构的合闸闭锁值设置过低,使得断路器分一合一分后又合了1次,此时分闸油压闭锁启动,导致需重新补压非全相动作进行分闸,实际上非全相动作之前故障已被母线失灵保护切除。开关保持在断位。增加了保护人员判断故障的难度。

3.3经验教训

从这个案例分析原因中可以看出,如果重合闸脉宽合适,断路器不会二次重合,即使二次重合脉冲存在,防跳回路也不会让断路器二次重合,即使防跳回路没有闭锁住,断路器如果只能进行一个合一分一合的操作循环,闭锁分合闸操作回路,断路器也不会二次重合。隐蔽性则体现在断路器机构内分立元件之间的配合以及和保护装置的配合,需要临时接人便携式录波器才能够监测到。所以作为一名继电保护工作者应督促断路器厂家提高二次回路分立配合元件的质量、选型和技术水平,满足微机保护动作速度快的要求。应该加强对新投运六氟化硫设备机构内二次回路的现场全面验收管理工作。

综上所述,几个案例之间虽然它们动作情况不同,但是它们有一个共性,就是动作的连环性和隐蔽性。若是继电保护把住其中任何一个环节的话,就不会不正确动作。每次继电保护不正确动作,都带来很大的隐蔽性,需要继电保护工作者投人很大的精力和时间去查找,期间还需要他们具备丰富的理论知识和平时不断积累的经验。

继电器的保护原理范文篇10

关键词:起重机;安全;继电保护

Abstract:Alongwiththedevelopmentofmodernindustrialprogress,peopleonthecranerequirement,somelargeandhighspeedcraneconstantlyamplification.Relayprotectionofcraneisveryimportant,butalsomakespeoplepaymoreattentiontotheroleofthisprotectiondevice.Basedonthebackgroundanddevelopmenttrendofelectricpowersystem,relayprotectionforcraneapplicationandimprovementofdiscussion,powersystemsforthesafeproductionandprovideatheoreticalreference.

Keywords:crane;safety;relayprotection

随着生产及进出口规模的扩大,集装箱装卸在海路运输业中的作用日益提升,为了满足对工作量大,效率高等需求,岸边集装箱箱起重机自动化程度越来越高,起重机能否高效安全稳定的工作者对于码头,对整个行业来说非常的重要,而安全则是重中之重,是集装箱起重机生产厂家长期面对的问题之一,而继电保护就成为起重机安全运行成功的垫脚石。

一、继电保护的基本原理

继电保护装置是指在电力系统中电气元件由于受到破损不能正常工作,然后继电器通过判断起到跳闸或者发出报警信号的一种自动保护装置。这种装置能够保证机器的安全性以及修复的简单性。继电保护装置的构成包括测量比较元件、逻辑判断元件、执行输出元件。这些元素是阶梯运行,缺一不可。通过测量与之前给定元件的物理参量进行准确比较,分析处理信息,然后根据测量的结果比如输出信号的性质,持续时间等判断故障的范围是元件内还是元件外的,最后做出保护措施跳闸或者报警信号的等,最后通过根据前一命令的指令进行发出信号,跳闸等指令。

继电保护的保护分区是为了保护在指定范围内的故障,不属于范围内的不采取控制,这样可以减少因故障跳闸引起的停电区域,也可以将没有影响到得部分起到保护作用,然后继续工作。所以电力系统中每个继电保护的界限划分的很清楚。当电力系统发生故障,继电保护就会及时的切除故障,所以继电保护的特点就是速度快、有选择性,灵敏性,可靠性。

二、继电器保护在集装箱起重机上的应用

当起重机发生故障时,继电保护作用显得尤为重要,这是一种重要的反事故的工作控制。灵敏性是继电保护的主要特点。当元件在继电保护的划分区域内发生障碍,在系统的运行下,无论故障位置,还是故障类型是否有过渡电阻都能够进行灵敏的判断进行继电保护作用。当起重机的电力系统在工作运行时出现故障,比如短路,短路有几种基本形式,一般有单项小电流接地,两相短路,两相接地短路等。这时候继电保护会通过辅助触点发出信号到PLC由PLC进行处理,或者直接对控制的电路进行跳闸等形式确保机器的安全性。

在起重机上继电器在继电保护中发挥不可或缺的作用。一般使用的有电磁继电器,主要就是产生电磁效应,由铁心,导线,衔铁片,触点簧片组成。其工作原理就是当电路通过一定量的电流时,衔铁就会因为电磁力的作用克服了簧片的拉力,向铁心靠拢,使得两点相接构成通路,当电路中断电的时候,电磁力也随之消失,衔铁因为没有电磁力的作用会被簧片的作用力拉回原处,使得两触点分开,构成断路确保了机器的使用安全,这样相接,分开在电路中就形成了导通与断路的作用。所以电磁继电器的装置基本能够符合快速性,灵敏性的特点。但是随着科技的进步,这种继电器也会随之改变。继电器也有物理参量,有一定的加载电压和电流,它原有的物理参量决定了继电器能够控制电路中的电压和电流的大小,使用时如果超出此值就会影响继电保护的工作状态,会破坏继电器的触点。不同起重机的继电保护装置有所不同,但是工作原理是相同的。起重机的继电保护一般具有可靠性还有安全性,这样给机器本身的正常运作提供很大的便捷,及时发出信号及时作出判断,所以继电保护在起重机上的使用是由元件的调控到继电保护装置的分配达到指定命令的控制措施。

三、改进和发展方向

由于科技的发展,企业现代化的需要不断提高,继电保护的在起重机上的改进和发展是一个迫在眉睫的问题。现时代的光电技术和计算机的发展速度飞猛提升,新型光学电压,电流互感器的发展前景很大。随着对电力需求的日益增加,传统的电磁感应已经不能满足对快节奏时代的运用,体积大,容量小,绝缘结构复杂同时耗费大量的铜线这种现象已经难以满足电力系统的发展要求。电流互感器已经成为一种潮流慢慢会取代电磁互感器,这种技术的产生式时代进步的一个象征,数字时代的来临必将会解决老式电磁互感器存在的一些弊端,采用数字时电压,电流互感器,实现数字运用的功能,将物理参数变成数字量,再用光信号去传输,这样的数字技术不仅节约了成本还提高了工作效率。新型的光学技术不仅体积小,质量轻而且与传统的电压、电流互感器相比工作效率已经操纵会变得简单。充分发挥了快速性,可靠性,实时性,简单性的处理特点。起重机上的电力系统如果采用这种数字技术,不仅提高了机器的运行效率,更能给企业带来更多的收益。微处理器的数字保护装置已经广泛运用于电力保护系统之中作为新型的能源。目前一些保护装置,计算测量仪这些设备都需要这种低功率,而且节约型的电压电流互感器。传统的互感器必将被这些新型的数字技术所取代。这对电力系统特别是继电保护作用有着重大的意义。

总之,工业生产的规模不断增长,起重机发挥了不可或缺的作用,物料搬运所需要的费用不断的提升,导致企业所需的大型或高速起重机的猛增,但是工作量的日益增大,人们对起重机的可靠性、安全性、操作性的要求就不断提升,简单的操作,容易的维护,这样才是新时代科技进步的代表,继电保护作为一种电力系统的一种保护装置对起重机的保护系统提供了简单,可靠的控制。机器出现故障这种保护措施的几种特性发挥了重大作用,所以电力系统提供的是一种性能良好,工作可靠性高的一种保护装置,但是随着科技的发展,光电技术以及计算机的不断进步,这种技术将会被数字技术所取代,慢慢的将起重机的保护装置将会做的更加完善,更符合人们对工作要求简单,操作灵活的要求。

参考文献:

继电器的保护原理范文篇11

关键词电力系统;继电保护

中图分类号TM774文献标识码A文章编号1673-9671-(2012)101-0188-02

随着我国电力系统规模和容量的日益增大,电力系统面临的故障日益严重。一旦电力系统出现故障,那么将会造成严重的经济损失和人身伤亡。继电保护作为一种新型的保护方法,近年来在电力系统运行过程中发挥了越来越重要的作用,因此对电力系统中的继电保护进行相关研究具有非常重要的现实意义。

1继电保护对电力系统的作用

为了构建良好的电力系统运行秩序,在设备运作期间必须要配备相应的运行保护。继电保护在电力系统出现故障时能够及时检测故障发生的因素,并判断故障的具置,向技术人员发送报警信号等,为故障问题的处理创造了条件。其优势体现在:

1)维护安全,性能优越。继电保护技术在数据信息安全性能的保护上作用显著,可有效避免外界因素干扰造成的装置受损等。当电力系统正常运行之后,继电保护装置可以实现有效的防范监测。随着社会科学技术的发展,继电保护装置的这种材料属于绝缘物质,在使用过程中很难受到外界腐蚀作用的影响。在今后的各项电力设备运行技术发展阶段,继电保护装置产品的性能会变得更加优化,其“能力强”主要表现在抵制干扰、增强绝缘、防范电磁等方面。

2)投资较少,安装便捷。继电保护装置本身的材料质量较小,产品重量一般都比较小。这就给电力行业施工创造了有利条件,在电网运行期间结合新建的传输通道,大大降低了电力系统占据的空间。继电保护产品质量的减小对于系统安装施工的操作效率提升也有帮助,可显著降低电网运行的成本投入。我国市场上销售的继电保护产品的内部结构都在积极优化升级。高科技的继电保护产品带来的是故障诊断的高效率,同时在电能消耗上要比其他保护装置低得多。继电保护装置在安装过程中操作方便,技术人员只需安装电气图纸操作即可。

3)检测故障及防范。从根本上看,继电保护是在电力系统的设备或元器件出现故障之后,对系统实施报警以提醒值班人员处理。另外,还可以对控制的断路器发出跳闸程序操控指令,以及时中断各受损设备的运行,从而达到保护设备或元器件的效果,这种高性能的故障防范功能是其他设备无法实现的。

2继电保护故障处理的原则

继电保护的故障处理不是单纯的以继电保护人员的意志而进行,需要按照一定的原则,这些原则如下:

1)处理继电保护故障时要保持正确、冷静的态度。电力系统的发电机等设备在运行过程中,继电保护装置的连接片要根据运行方式的变化而进行相应的投、退处理。在进行这两项处理时要求工作人员同时进行,而且要经过细致的辨别清楚后,才能够操作。而且对于跳闸回路的连接片来说,只有相应的开关在运行的过程中才能够投入,所以,首先要使用直流电压表对两个连接片之间的直流电压进行测量,然后再投入。此外,电气的运行人员还要定期对继电保护装置中的数据进行检查,同样的,也要有两个人来完成,而且他们不能够对数据进行修改,或者删除。

2)能够根据信号状态准确判断故障发生点。在继电保护现场中出现的光子牌信号、事件记录以及故障录波器所采集到的图形、继电保护装置的灯光信号或者其他信号等都是对继电保护的故障进行处理的基础依据。所以,在对继电保护的故障进行处理之前,要对这些信号进行分析,判断出信号处的故障和真伪。同时,根据这些信号所提供的有效信息迅速的采取适当的处理措施,这才是处理继电保护故障的关键之所在。

3)对人为故障要给以紧急处理。正确处理人为故障时继电保护故障处理中一个非常重要的问题。一旦根据继电保护现场所提供的信号故障信息,没有找到导致故障发生的原因,或者当断路器在断路之后没有发出相应的警告信号,当这两种情况发生时,会给故障处理增加很大的难度,因为,继电保护人员根据已知信息无法正确的判断出这些故障时有人为造成,还是继电保护设备、装置自身发生的故障。所以在处理中这类故障时首先要弄清楚的就是发生故障的原因。在继电保护现场中,现场运行人员的基础技能水平不高,对故障也缺乏足够的重视程度,没有及时的采取正确的处理措施,操作时的误碰等都会导致人为故障。所以,如果发生了人为原因造成的继电保护故障,要对这些故障的实际状况如实反映,以便工作人员能够进行准确的分析,同时对于导致这类事故的原因及处理方式也要给以记录,避免再次发生类似的故障。

3差动保护二次回路检修方法

差动保护是继电保护的常用方式,也是保护电力系统正常运行的重要设备。为了让差动保护作用得到全面的发挥,技术人员或操作人员在调试、控制差动保护设备时必须要注意多个方面的控制,为差动保护设备营造一个良好的运行环境。通常,对差动保护二次回路故障采取的处理措施多数是对电流、互感器等方面实施优化调控。

1)负荷检修。负荷过大给电流互感器造成的影响是超荷载运行,长时间运行下去会减短电流互感器的使用寿命。因而,差动保护运行时要对电流互感器的负荷大小严格控制,根据实际运行需要适当降低电流互感器的励磁电流。降低二次负荷的方式:降低控制电缆的电阻、选择弱电控制用的电流互感器等,同时定期检查互感器的实际状态。

2)质量检修。市场销售的电流互感器产品种类较多,具体使用时还是要结合具体的系统保护方式选择。对于测电流过大的继电保护装置,在差动保护过程中则可以选择带小气隙的电流互感器,该装置的铁芯剩磁小,这一特点会使得电流互感器的饱和难度加大,提高了差动保护装置的性能。该类互感器的励磁电流小,对失衡电流也有控制作用。

3)电流检修。电流互感器是决定差动保护效果的重要元件,也是构建差动保护模式时需要重点分析的内容。在电流互感器安装使用期间,要对互感器的使用型号合理选择。最好使用差动保护专用的D级电流互感器;在经过保护装置的稳态短路电流时,电流达到最大值后需将差动保护回路的二次负荷控制在10%误差内。

4)保护检修。除了电流差动保护之外,遇到一些操作难度较大的情况时也可以适当变化差动保护的形式。比率差动保护则是差动保护运用较多的一种,将其运用于二次回路检修中也能发挥良好的故障诊断性能。比率差动保护的运行方式:当经过继电保护回路的电流值增大时,不断增强装置保护的性能,以防止故障期间保护装置出现误操作、误动等现象。

4搞好系统回路的检查工作

电力系统是差动保护二次回路正常运行的前提,在实际运用过程中必须要对电力系统实施严格的控制管理,通过对系统的更新升级来增强运行性能。实现电力系统的更新应该根据收集到的各项数据信息进行收集、分析、处理、归纳,以从多个方面的控制继电保护装置的有序性。

1)回路结构检查。分析数据信息是电力系统操作的必经环节,差动保护涉及到的电力信息是多方面的,这就需要做好不同信息的分类处理。系统分析可以实现电力自动化操作,对相关信息处理后结合文字、符号、图表来描述信息结果。系统分析包含系统界面、内部接口、功能等。可以通过模拟仿真来检查系统中的继电保护情况,如图1所示。

2)回路功能检查。新时期我国工业运用的电力系统是高性能的装置,在规划系统时要掌握具体的系统功能分配。引进操作系统前电力要弄清系统用于处理哪些传输信息,然后对硬件资源、系统模块结构图、模块设计说明书等方面综合考虑,最后由编程人员完成系统结构的编排设计。

3)回路调试检查。当操作系统基本模型出来之后,技术人员要对设计好的电力系统进行模拟调试,通过计算机网络模拟来发现系统存在的不足之处。技术人员在安装系统后也要适当调试操作,对用到的数据库、软件、图形等都合理调试一番,确认无误后才能投入到差动保护运作中。

4)回路操作检查。电力系统在运行阶段会遇到各种异常故障,影响了系统内部结构性能的正常发挥。在构建操作系统时应注重系统检查环节的布置,通过安装相关的检测装置对系统实时检测,及时掌握数据信息的具体状况,根据差动保护二次回路的实际需要设计方案。

图1继电保护的模拟仿真

5结束语

总之,继电保护在电力系统中不仅维持了系统的正常运行,也保证了系统内部各项装置的有效运行。电力企业在充分认识继电保护作用的同时,也要做好相关保护装置的故障处理,差动保护作为继电保护的重要形式,可以为其他继电保护装置提供指导。随着电力科技含量不断提高,保护装置不断地更新换代,要保证电网安全稳定运行,必须不断提高管理水平,完善继电保护相关管理制度,加大人员培训力度,增强继保人员的工作责任心,变被动管理为主动管理,才能防患于未然。

参考文献

[1]浅谈提高继电保护辅助装置可靠性的措施[J].

[2]电力系统继电保护实用技术问答[M].北京:中国电力出版社,2008.

继电器的保护原理范文篇12

关键词:微机继电保护事故种类处理方法

引言

微机继电保护由于各种内在和外在的原因,会发生死机、误动、误发信号、错误指示断路器位置等情况,严重威胁当前电网的安全稳定运行及微机继电保护装置的可靠性。因此,在优化硬件设计、提高制造工艺及元器件质量的同时,加强保护装置在正常运行中的维护和管理,掌握微机继电保护事故动作的一般规律,是减少微机继电保护装置故障和保障电网安全稳定运行的重要手段。

一、继电保护事故的特点及其共性

1、逆变稳压电源问题。①纹波系数过高②输出功率不足或稳定性差③直流熔丝的配置问题④带直流电源操作插件。

2、定值问题。①整定计算的误差②人为整定错误③装置定值的漂移。

3、TA饱和问题。继电保护测量对二次系统运行起关键作用,系统短路电流在中低压系统中急剧饱和时,现场的馈线保护因电流互感器饱和难以启动,这时就会很容易发生事故。对TA饱和问题,从故障分析和运行设计的经验来看,主要采取分列运行的方式或采取串联电抗器的做法来限制短路电流;采取增大保护级TA的变比以及用保护安装处可能出现的最大短路电流和互感器的负载能力与饱和倍数来确定TA的变比;采取缩短TA二次电缆长度及加大二次电缆截面;保护安装在开关厂的方法有效减小二次回路阻抗,防止TA饱和。

4、插件绝缘问题。微机保护装置集成度高,布线紧密,长期运行后由于静电作用,会使得插件接线焊点周围聚集静电尘埃,在外界条件允许时两焊点之间出现导电通道,从而引起装置故障或者事故。

5、抗干扰问题。微机保护的抗干扰性能较差,对讲机和其他无线通讯设备在保护屏附近的使用会导致一些逻辑元件误动作。现场曾发生过电焊机在进行氩弧焊接时,高频信号感应到保护电缆上使微机保护误跳闸的事故。新安装、基建、技改都要严格执行有关反事故技术措施。尽可能避免操作干扰、冲击负荷干扰、直流回路接地干扰等问题的发生

6、性能问题.主要包括两方面,即装置的功能和特性缺陷。有些保护装置在投入直流电源时出现误动;高频闭所保护存在频拍现象时会误动;有些微机保护的动态特性偏离静态特性很远也会导致动作结果的错误。在事故分析时应充分考虑到上述两者性能之间的偏差。

7、软件版本问题.装置自身的质量或程序漏洞问题只有在现场运行过相当一段时间后才能发现。继电保护人员在保护调试、检验、故障分析中发现的不正常或不可靠现象应及时向上级或厂商反馈情况,及时升级软件版本.

二、微机继电保护事故处理的一般原则

1、具有高度的主人翁责任感

2、具有科学的实事求是的工作态度

继电保护的事故的处理不仅涉及运行单位和个人,且一旦拒动或误动,必须查明原因,并力图找出问题的根源所在,以便彻底解决问题。这必将涉及到事故的责任者,甚至可能接受相当严厉的处罚。事故发生后的许多资料和信息都可能被修改或丢失,给事故分析带来较大难度甚至查不出原因,存在的问题无法得到解决,系统类似的设备无法吸取事故教训。因此,事故的调查组织者必须坚持科学的实事求是的态度。

3、具有实践和理论相结合的丰富经验

继电保护的事故处理不仅涉及继电保护的原理及元器件,而且现场处理继电保护事故的经验表明:大部分继电保护事故的发生与处理过程与基建、安装、调试过程密切相关。掌握足够必要的微机继电保护基本原理及一般继电保护理论是分析和处理事故的首要条件,但足够的丰富的现场经验往往对准确分析与定性事故又起着关键作用。

4、对试验电源要求。

在微机保护试验中,要求使用单独供电电源并核实用电试验电源的相序和对称性

5、对仪器仪表要求。

万用表、电压表、示波器等电压信号仪器选用高输入阻抗;继电保护测试仪、移相器、三相调压器应注意其性能稳定。

6、掌握继电保护技术。①电子技术知识。电网中微机保护使用越来越多一名继电保护工作者学好电子技术及微机保护知识当务之急②微机保护原理和组成。在微机继电保护测试仪及自动装置的使用过程中,要能迅速分析出产生故障或事故的原因以及故障部位,这就要求电力工作人员需要具备过硬的微机保护知识,熟悉保护原理和装置性能,熟记微机保护逻辑框图,熟悉电路原理和元件功能。③具备技术资料的阅读能力。微机继电保护事故的处理离不开诸如检修规程、装置使用与技术说明书、调试大纲和调试记录、定值通知单、整组调试记录二次回路接线图等资料,所以必须具备这方面的素质。

7、运用正确的检查方法。①逆序检查法。如果利用微机事件记录和故障录波不能在短时间内找到事故发生的根源时,应注意从事故发生的结果出发,一极一级往前查找,直到找到根源为止。这种方法常应用在保护出现误动时。②顺序检查法。该方法是利用检验调试的手段来寻找故障的根源。按外部检查、绝缘检测、定值检查、电源性能测试、保护性能检查等顺序进行。这种方法主要应用于微机保护出现拒动或者逻辑出现问题的事故处理中。③运用整组试验法。此方法的主要目的是检查保护装置的动作逻辑、动作时间是否正常,往往可以用很短的时间再现故障,并判明问题的根源。如出现异常,再结合其他方法进行检查。

三、结束语

我国电力系统继电保护技术的发展经历了4个历史阶段,微机继电保护在程序的指挥下,有极强的综合分析和判断能力,因而微机继电保护装置可以实现常规保护很难办到的自动纠错,即自地识别和排除干扰,防止由于干扰而造成误动作。另外微机继电保护装置有自诊断能力,能够自动检测出计算机本身硬件的异常部分,配合多重化可以有效地防止拒动,因此可靠性很高。随着电力系统的高速发展和计算机技术和通信技术的进步,继电保护技术面临着进一步发展的趋势。其发展将出现原理突破和应用革命,由数字时代将跨入信息化时代,发展到一个新的水平。这对继电保护工作者提出了艰巨的任务,也开辟了广阔的发展空间。

参考文献

[1]王梅义.高压电网继电保护运行技术.北京.电力工业出版社.1981.

[2]国家电力调度通讯中心.电力系统继电保护典型故障分析[M].北京:中国电力出版社,2001.

[3]段玉清,贺家李.基于人工神经网络方法的微机变压器保护.中国电机工程学报.1998.3期.