欢迎您访问大河网,请分享给你的朋友!

当前位置 : 首页 > 范文大全 > 报告范文

纳米技术范例(3篇)

来源:整理 时间:2024-01-19 手机浏览

纳米技术范文

[关键词]纳米光电测控技术

纳米科学与技术,有时简称为纳米技术,是研究结构尺寸在0.1至100纳米范围内材料的性质和应用。它主要包括纳米材料、纳米动力学、纳米生物学和纳米药物学、纳米电子学等四个方面。纳米级材料工程是指用于纳米技术的材料开发,主要应用于功能织物、医学生物工程、电子工业、催化剂、超微传感器等几个方面。纳米级加工技术纳米加工技术在纳米技术的各领域也起着关键作用,包含机械加工、能量束加工、化学腐蚀以及扫描隧道显微镜加工等许多方法。然而,纳米级的测控技术是制约纳米技术发展的关键。

我国测控领域的科研人员经过四十多年长期探索,不断研究,克服了各种困难,利用光、机、电、算多学科综合,发展了一整套微/纳米光电测控新技术,研制出新一代测控仪器,已经成功地应用于军用、民用很多领域,取得了明显效果。

一、纳米光电测控技术

纳米光电测控技术以纳米计量光栅为核心元件,配以光电转换、信号读取、信号处理以及超精机械,形成各种测量仪器,可直接用于测量或控制长度、位移等多种几何量。具有测量精度高、量程大、环境适应能力强、稳定性好等优点。该项技术主要由传感器和数显装置两部分组成。利用该项技术所生产的产品具有自动求最大值、最小值、峰峰值、公英制转换、置数、打印、复位、自检等功能,同时还具有RS232串行通讯接口,与计算机、单片机等连接后可进行自动测量、自动数据处理和自动控制等优点。纳米测控技术包括纳米级的测量技术和纳米级的定位控制技术两个方面。

1.纳米测量技术

目前,纳米级测量技术的主要发展方向有光干涉测量技术和扫描显微技术等,以表面粗糙度和表面形貌等为测量对象。

(1)光外差干涉仪

光外差探测是一种对光波振幅、频率和相位调制信号的检波方法,可以对于光强度调制信号。光外差干涉仪是使用两种不同频率的单色光作为测量光束和参考光束,通过光电探测器的混频,输出差频信号(受光电探测器频响的限制,频差一般在100兆赫以内)的仪器。被测物体的变化如位移、振动、转动、大气扰动等引起的光波相位变化或多普勒频移载于此差频上,经解调即可获得被测数据的仪器。目前,通常使用的干涉条纹图的测量方法,在进行纳米级测量时有非常大的局限性。因此利用外差干涉测量技术,可以得到0。1nm的空间分辨率,测量范围可达50mm,促进了纳米技术的进一步发展。

(2)X射线干涉仪

X射线干涉仪以非常稳定的单晶硅晶格作为长度单位,可以实现亚纳米精度的微位移测量。

可见光和萦外光的干涉条纹间距为数百纳米,这种间距不易测量。而利用射线的超短波长干涉测量技术,可以实现0。005nm分辨率的位移测量,测量范围可达200μm,是一种测量范围大较易实现的纳米级测量方法。近年来,又产生了X射线形貌测量仪,它采用掠人射角的射线来测量超光滑表面形貌。

(3)激光频率分裂测长

激光频率分裂的值与分裂元件的位移有关。通过测频率测位移,精度已达到1nm,进一步稳定激光频率可达到0.01nm,测量范围为150μm。

(4)扫描探针显微(SPM)技术

SPM实际上是一个很大的家族,它包括扫描隧道显微镜、原子力显微镜、磁力显微镜、激光力显微镜、光子扫描隧道显微镜及扫描近场光学显微镜等等,利用它们可以用来测量非导体、磁性物质,甚至有机生物体的纳米级表面。

扫描探针显微(SPM)技术是在扫描隧道显微镜(STM)发明取得巨大成就的基础上发展起来的各种新型显微镜。它们的原理都是通过检测一个非常微小的探针(磁探针、静电力探针、电流探针、力探针),与被测表面进行不接触各种相互作用(电的相互作用、磁的相互作用、力的相互作用等),借助纳米级的三维位移定位控制系统,测出该表面的三维微观立体形貌,在纳米级的尺度上研究各种物质表面的结构以及各种相关的性质。

扫描探针显微技术(SPM)具有以下特点:(1)具有原子级的高分辨率。STM的横向分辨率可达到0.1nm,垂直表面方向分辨率可达0.01nm,这是目前所有显微技术当中分辨率最高的。(2)可以观察单个原子层的局部表面结构。STM观察的是表面的一个或两个原子层,即几个纳米的局域信息,而不是像光学显微镜和电子束显微镜只能获得平均信息。(3)STM配合扫描隧道谱(STS),可以得到表面电子结构的有关信息,可以通过调节隧道结偏压来观察不同位置电子态密度分布,观察电荷转移的情况,还可以得到电子结构的信息。(4)STM可以实时、实空间地观察表面的三维图像。而不像其他,例如各种衍射方法所得到的只是倒易空间的图像,不是实空间的,而且只有进行“傅里叶变换”才能得到实空间图像。(5)STM可以在不同条件下工作,例如真空、大气、常温、低温、高温、熔温,不需要特别的制样技术,而且探测过程对样品无损伤,因而扩展了研究对象的范围。(6)STM不仅可用于成像,还可以对表面的原子、吸附的原子或分子进行操纵,从而进行纳米级加工,这是其他技术所不具备的一种功能。

2.纳米定位控制技术

在纳米级加工与测量中,需要纳米级的三维定位与控制。目前,用一个执行元件来实现大范围的纳米级定位是比较困难的。因此,实际的定位机构多采用大位移用的执行元件和纳米级定位用的执行元件相结合方式来实现。实现三维定位与控制,目前普遍采用压电陶瓷致动器件,它在纳米级的极小范围内,通过控制系统能实现近似的三维驱动。此外,利用电致材料、静电或磁轴承式结构,以及静电致动的高精度定位控制技术,也向纳米级精度发展,也可采用摩擦驱动装置及丝杠定位元件,通过特殊的方法进行纳米级的定位。

二、纳米光电测控技术特点

光电测控技术采用的光电自动测量方法是为适应我国高速发展的测控领域的现状而逐步研究、开发形成的,并以其独特的优点逐步成为当今世界范围内的一种新型、高精度的测试手段。它采用现代高科技手段,测试精度涵盖了微米、亚纳米及纳米领域。

这种新型测控技术,具有许多重要的特点:

(1)首先,它的应用覆盖面特别宽,既可用于微米、亚微米量级,也可用于纳米量级;既可用于传统机械、传统仪器的更新改造,又可用于尖端科技的高层突破;

(2)其次,技术上综合性很强,光、机、电、算容为一体,具备了纯机械、纯电学、纯光学等传统测量技术很难达到的优越性;

(3)再次,它的应用范围特别宽广,军用上,如常规武器的改造提高;航空航天的各种测控等;民用上,传统产业上的更新改造、制造业的技术提高等。

三、最近研究成果

目前世界上已出现了一些能达到纳米量级的测量仪器,但在测量范围和实用性上尚不能完全满足实际要求。中国青旅实业发展有限公司所属标普纳米测控技术有限公司开发的两项科技成果在很大程度上弥补了这一领域存在的不足,对微/纳米测控技术和相关领域的发展起到了促进作用。这不仅表明我国微/纳米光电测控技术处于世界领先水平,而且对解决目前制约我国高新技术、传统制造业发展及新材料研制过程中的计量问题,推动世界精密计量仪器的升级换代也具有重要意义,同时标志着世界微/纳米测控技术向更精微迈进了重要一步。

“纳米测长仪”是一种通用长度传感器,它的研制成功表明长度通用量具已经提高到了纳米量级,并且从静态人工读数发展到数字化自动显示。其数显分辨率达到1纳米,测量重复性(标准偏差)为0.8-1.2nm,在未作误差修正的前提下,10mm测量范围内示值误差优于±0.06μm。与国际上同类仪器相比,它在分辨率、重复性、准确度和短时稳定性等主要技术指标上,都处于国际领先水平。它用途广泛,技术独特,生产成本远低于国外同类产品,推广应用前景广阔。

“量块快速检测仪”是一种新型的量块检测仪器,它成功的将纳米测长仪应用到量块检测上,将直接测量与比较测量结合起来,对名义尺寸10mm及10mm以下的量块实现了直接测量。该仪器测量分辨率达到1nm,直接测量范围10mm,比较测量范围110mm,与国外同类仪器相比,主要技术指标达到了国际先进水平。该仪器还可以与计算机连接通讯,实现数据自动处理,从而提高了量块检验速度,减轻了检测人员的劳动强度。由于其对环境温度不敏感,现有基层计量室不必提高温控要求即可推广使用。该仪器经济实用,适合基层计量室检测三等及三等以下量块。该科技成果在纳米光栅的制造与检测、纳米光栅的信号读取、光电信号的高质量处理和超精机构的加工改进等四方面均具有独创性,集光学、机械、电子、计算机多学科于一体,开发难度大。国内外多家科研单位曾致力于该种仪器的研究,但都没能取得突破性进展。

四、结论与建议

纳米光电测控技术的应用,将极大地促进我国新材料技术的研发,对于各种新型材料的加工、检测及生产高精度新型材料的机械设备的制造等都有着举足轻重的意义。同时,纳米光电测控技术解决了当代高新技术发展在测控方面面临的十分棘手的难题,具有划时代的意义。

参考文献:

[1]曾令儒.纳米技术[J].宇航计测技术,1999,19(5):43-45.

纳米技术范文

永磁体是指能够长期保持吸引铁质物体的磁性材料。它们磁性的强弱取决于其最大磁能积,即(BH)max这一指标,如果磁能积越大,那么实际应用需要的永磁体的体积将越小,用量和成本也将随之降低。

“永磁之王”稀土永磁

当前永磁体中磁性能最强、应用最广的是稀土永磁材料,它是将钐(Sm)、钕(Nd)等稀土金属元素,钴(Co)、铁(Fe)等过渡族金属元素和其他微量金属元素组成的合金材料,主要分为Sm-Co系永磁体和Nd-Fe-B系永磁体两大类。

Nd-Fe-B系永磁体,是1983年由日本和美国学者发明的具有最高磁能积的新型稀土永磁材料,它的磁能积非常高,理论上可达到64MGOe(兆高奥斯特)。Nd-Fe-B永磁体的吸力可以达到自身的600倍,也就是说一块60千克的永磁体可以吸起重达36吨的集装箱。它被称作当代“永磁之王”,是目前磁性最高的永磁材料,也是综合性能最高的一种永磁材料。“永磁之王”的研制成功,使各种永磁器件实现了超小型化。例如,美国通用汽车公司在1000cc汽车发动机上采用这种永磁体后,发动机重量减少近50%,体积也小了将近一半。

在Nd-Fe-B稀土永磁制作的电机中添加极少量的镝(Dy)和铽(Tb)就能够使电机中的磁铁变轻90%,它们是绿色能源产品的魔法配料。稀土元素镝和铽非常紧缺,世界上99%的镝和铽产自中国南方的广东、四川、江西等地。但开采过程却充满污染风险,用来提取稀土元素的酸性物质可能会进入溪涧和河流,破坏稻田及渔场,污染水源,会引发极其恶劣的环境问题。严重缺乏稀土的日本、富产稀土但封存了本国稀土矿的美国等发达国家,因此而转从中国进口大量廉价稀土,给中国的生态环境造成了重大压力。

纳米技术让“磁力”倍增

由于各国对节能减排的要求不断提高,电动汽车和风力发电等领域也对稀土永磁体的磁性能和体积提出了更高的要求。然而,当前Nd-Fe-B永久磁铁的最高磁能积数值已经非常逼近其理论极限值(64MGOe),利用传统的磁体制备技术很难再提高其磁性能,所以新的制备技术成为世界各国探索的焦点。

20世纪90年代以来,中国、美国、日本、韩国等都在积极研究用纳米技术制造一种被称为“纳米复合永磁体”的新型稀土永久磁铁。它是利用纳米技术将永磁材料和软磁材料相互复合在一起而形成的,拥有着远远高于现有Nd-Fe-B永久磁铁的2倍以上的磁能积,理论数值高达90~120MGOe。

为何新型永磁体会有超强的“磁力”呢?在纳米技术制作新型永磁体原理图中(图1),横截矩代表磁体的矫顽力(磁体保持磁力、抵抗外界干扰的能力),永磁材料的此数值较高;纵截矩代表着磁体的剩磁(代表磁力大小),软磁材料则更胜一筹。曲线和纵、横坐标之间包围着的最大矩形面积代表着磁体的磁能积,此面积越大代表磁体的磁能积越大。

永磁材料具有较高的矫顽力(横坐标),而且传统技术对此指标提高前景有限,如果要进一步提高其磁能积,就只能通过提高其剩磁(纵坐标)。而恰好软磁材料具有较高的剩磁。通过研究发现,只要在纳米尺度上将永磁材料和软磁材料复合在一起,就可以利用纳米技术制作出新型永磁体。这类磁体由于同时兼具了软磁材料的较高剩磁和永磁材料的较高矫顽力两大优势,就会在第二象限与坐标包围着比传统永磁体更大的矩形面积,也就是说新型永磁体能够具有前所未有的高磁能积。

纳米永磁材料具体是如何制成的呢?首先,利用纳米技术以物理或者化学合成的方式研制出高性能的永磁纳米颗粒;然后,在这些永磁纳米颗粒上均匀地包裹上一层软磁性的铁纳米颗粒,就形成了软磁性/永磁性的纳米复合颗粒;然后通过高压成型、高温烧制,就可以获得高性能的新型稀土永磁体。其中,最为关键的环节是如何用纳米技术制备或者合成高性能的纳米复合颗粒,这也正是利用纳米技术制作新型永磁体的微妙之处。

新型永磁体将改变生活

纳米技术范文篇3

关键词:纳米技术;绿色建材;环保;性能

中图分类号:TU74文献标识码:A文章编号:

一、概述

纳米技术即在纳米尺度(10-10~10-7m)上的工程学,在纳米尺度的物质呈现与众不同的特点,如量子尺寸效应、小尺寸效应、表面效应和宏观量子隧道效应等,将纳米尺寸的材料直接制成一维、二维和三维的新材料、新器件,或者将其作为添加剂对其它材料进行复合改性,可使材料获得更加优异的或者独特的性能,在各个科学与工程领域均有应用。

1999年3月举办的第一届全国绿色建材发展与应用研讨会上提出了绿色建材的概念:绿色建材是指采用清洁生产技术,少用天然资源和能源,大量使用工农业或城市固态废弃物生产的无毒、无污染、无放射性,达到生命周期后,可回收再利用、有利于环境保护和人体健康的建筑材料。国际上也称“健康建材”、“环保建材”等。纳米技术在新型绿色建材方面的应用不仅提高了材料的常规性能和绿色化,而且赋予其新的特殊性能。

二、纳米技术在绿色建材中的应用

1、高性能混凝土

在水泥配料中加入纳米级矿粉等添加剂可以明显提高混凝土的强度、施工性能和耐久性能。资料显示,纳米硅粉渗入水泥,可加快水泥诱导期和硬化期的水化反应,改善三维结构和堆积密度,既减少表面水,又减少间隙水,使凝胶产生聚合再聚合的作用,成倍提高其强度、硬度、抗老化性、耐久性等指标。纳米CaCO3和纳米SiO2等不但可以填充水泥空隙,提高混凝土流动性,更重要的是可改善混凝土中水泥石与骨料的界面结构,使混凝土强度、抗渗性与耐久性均得以提高。而且水泥配料中均匀分散加入部分纳米级粉体,可以降低烧成温度,节约能源。李颖等研究了硅灰和纳米级SiOx对水泥浆体需水量的影响,并通过试验建立了水泥标准稠度用水量与两者的掺量之间的数学模型,这对用纳米级硅质粉体科学配置高性能水泥基复合材料具有一定价值。另外,粉尘制造纳微米高性能水泥,不仅能化害为利,且可产生较高附加值;采用纳米技术开发可实用化的硅酸盐系胶凝材料的超细粉碎技术和颗粒球形化技术,可大幅提高水泥熟料的水化率,制备高性能混凝土。

2、纳米防水水泥

由于混凝土硬化过程中,内部形成的许多毛细孔隙易吸水,水分挥发后,混凝土易干缩开裂,因此需要进行防水处理。添加纳米粉制备防水水泥,其加量少、成本低,优于传统表面涂料防水和加入膨胀剂防水。绿色无污染的纳米XPM水泥外加剂可使水泥获得很好的防水功能,用于动水堵漏时,具有较高表面能的纳米材料可使其粘结力增强达3.8MPa,凝结时间快1min20s,1h强度达3~5MPa,并大幅度提高了抗渗指标;用于喷射混凝土和灌注时,可减少混凝土的水泥用量,减少粉尘排放。

3、净化空气的纳米光催化混凝土

汽车排放的NOx和SO2对人体健康危害性很大。锐钛矿晶型纳米TiO2具有很强的光催化能力,可在一定的光照下与水及氧反应生成O2-(过氧离子)和活性强的-OH或-OOH,破坏有机物中的C-C、C-N、N-H键等。因此在生产混凝土和混凝土砌块时,在表层水泥砂浆中加入锐钛矿晶型纳米TiO2光催化剂,用来做路面材料或建筑物的外墙、道路两侧的护坡砌体和人行道路面砌块等,可有效地净化NOx和其它有害气体。例如日本大阪府实施了“采用光催化剂改善沿海环境事业”的项目,在大阪府道临海线道路两侧建设了光催化混凝土墙,起到了降低NOx浓度的作用。美国洛杉矶和日本长崎在交通繁忙的道路两边,铺设光催化净化功能的混凝土地砖,来净化NOx保障人体的健康。

4、纳米敏感复合水泥或智能混凝土

添加了气敏纳米材料的复合水泥可用在毒气泄漏的化工厂建筑物建设或路面的铺设中,用于毒气泄漏的预警;添加CO气敏纳米材料的水泥可用于煤气管道和厨房的煤气泄漏预警;加入纳米导电金属氧化物或纤维,使混凝土具有较强的导电性能,利用电阻率与应力的变化关系,用于高速路面上的超重汽车或桥梁应变过大的预警。

5、在涂料方面的应用

利用纳米复合技术,还可提高涂料与建筑物表面的粘结强度、表面硬度和耐磨性;增加涂膜层的耐水冲刷能力、耐风沙冲刷和侵蚀能力;提高涂料膜层光洁度、强度和保色性、赋予高分子基涂料微裂纹自修复能力;提高涂料的阻燃、隔热等作用。

现代建筑气密性好,隔热和换气不充分,墙壁可能结露、潮湿,从而利于真菌等微生物的繁殖、增生,引发疾病。纳米抗菌材料克服了传统有机抗菌产品在安全性、广谱性、抗药性和耐热加工性等方面的缺陷,能满足人们生活舒适水平和卫生水平不断提高的要求。中科院理化所研制出新型载银TiO2光触媒涂料,对金黄色葡萄球菌的抗菌率大于99%,且该涂料无刺激性、无毒,既能满足高、中、低档家庭装修需求,也适于医院、食品加工等公共场所的特殊需要。泰兴纳米材料厂、浙江丽水金池亚纳米材料公司和浙江舟山明日纳米材料公司等相继开发了各种纳米抗菌剂,已用于涂料、塑料,橡胶、玻璃、木材、陶瓷等产品中。

纳米TiO2净化NOx和SO2等有害气体的光催化作用同样可以用于建筑物内外墙或高速公路隔音壁涂料的生产,且其光催化活性的有效时间较长。

6、在玻璃方面的应用

在有机玻璃中加入经过表面自修饰处理的SiO2,既提高玻璃强度和韧性又不影响透明度,可使有机玻璃抗紫外线辐射而达到抗老化的目的,并具有屏蔽紫外线和短波辐射功能,有可能替代传统的钢化玻璃和某些镀膜玻璃。

在玻璃、陶瓷和瓷砖的表面涂上一层纳米TiO2薄层后,在光的照射下任何玷污在表面上的物质,包括油污、细菌和病毒均可被其分解氧化变成气体或易被擦掉的物质,达到除毒、脱色、矿化的目的,并且利于厨房瓷砖以及高层建筑玻璃、外墙陶瓷的保洁。纳米Fe2O3、TiO2、ZnO等,在空气和水的存在下经日光照射,可分解沉积在玻璃上的污物,氧化室内有害气体,杀灭空气中的各种细菌和病毒,降低玻璃表面的憎水角,使玻璃具有防霉、抗霉、抗菌、自洁作用,可用于玻璃幕墙、道路照明灯罩等。

7、在卫生陶瓷、瓷砖方面的应用

纳米技术除了使陶瓷材料的强度、韧性等机械性能得到大幅度提高之外,对于卫生陶瓷、瓷砖来说还可赋予新的功能性。把锐钛矿型纳米TiO2光催化剂用涂釉或喷涂的方法涂覆、烧结在陶瓷表面,制成具有杀灭细菌和病毒、分解空气中有机物挥发物等有害气体的陶瓷墙地砖、卫生陶瓷,是公共场所、游泳池、卫生间和居室等处使用很好的建筑材料。其它纳米抗菌材料(如Ag、Co等的金属离子和ZnO、Fe2O3等金属氧化物)复合掺入瓷砖或卫生洁具等中,同样可以获得具有抗菌功能,而且纳米材料的加入还抗老化、增韧和增强作用。

8、在木材方面的应用

纳米技术在木材中也有着广泛和深入的研究,如杜万里等开发了纳米SiO2复合脲醛树脂木塑复合材料,该树脂在高温固化时与基体木材化学成分发生了化学反应,生成的新基团改变了木材的纤维素、木质素等主要化学组分的性质,增强了木材木塑复合材料的憎水性,提高了力学强度,且其抗水性、压缩强度比纯木材、脲醛处理和共混脲醛处理杨木都有大幅度提高。而时尽书等研究指出纳米SiO2对提高杨木的硬度也有显著作用。许福等采用纳米合成技术,以正硅酸乙酯、钛酸丁酯等作为前驱体,结合微波扩孔技术、超声分散技术、压力浸渍等方法,改善了木材渗透性,提高了木材硬度。

三、结语

纳米技术经过近20年大量基础性研究,在建筑材料领域,利用纳米技术开发出来的绿色建材也将越来越多,并将随着我国城镇化进程的加快而得到更快更广的应用。但由于目前我国针对绿色建材产品的评价指标体系和标准还不完备,社会上琳琅满目的绿色建材并不完全符合“绿色”,尤其是纳米技术的应用还存在一定风险,如空气中游离的纳米粒子因小尺寸效应更易燃烧、纳米粒子可以穿透皮肤进入人体、其表面活性可能会引起氧化或细胞染色功能等,对人体健康的潜在影响和纳米粒子制造的环境等方面存在不确定因素。因此在应用纳米技术的绿色建材进入市场前,必须进行严格的环境和健康方面的检测,并且希望国家相关部门尽快出台相关法律法规,从立法的角度规范市场。当然纳米技术的优点是显而易见的,不能因为有潜在的危害而放弃研发和应用,仍需克服或消除这种不利因素,实现科技带给人们的益处。

参考文献:

[1]MohamedH.A.Hassan.SmallThingsandBigChangesintheDevelopingWorld[J].Science,2005,309:65-66.

[2]李钟华,张秀媚,杨亭阁.纳米技术与纳米材料[J].化工进展,1996,(2):20-23.

[3]王少南.当前新型建材的发展趋势[J].建材发展导向,2003,(3):21-23.

[4]何登良,董发勤,邓跃全.纳米技术在建筑材料领域的应用[J].混凝土,2005,(8):6-10.

[5]李颖,唐明,聂元秋.纳米级SiOx与硅灰对水泥浆体需水量的影响[J].沈阳建筑工程学院学报(自然科学版),2002,18(4):278-281.

[6].张金升,尹衍升,刘蕾,等.纳米材料和技术与发展新型建材[J].中国建材装备,2002,(2):41-43.

[7]王芳.XPM水泥基防水复合型外加剂在混凝土结构工程中的应用[J].铁道标准设计,2003,(5):54-55.

[8]马涛,杨丽珍,吴静芝.纳米TiO2的制备及其应用[J].北京印刷学院学报,2004,12(3):26-29.

[9]吴思刚,黄义春,唐光裕,等.智能水泥混凝土的实验研究[J].哈尔滨建筑大学学报,2001,34(2):128-129.

[10]李经,谭欣,赵林.二氧化钛光催化涂料的研究进展[J].合成材料老化与应用,2005,34(1):44-48.

[11]孟力.关于绿色建筑材料的探讨[J].城市建设,2010,(28):127-128.

[12]杨鼎宜.纳米材料的结构性能特征及其在建筑中的应用[J].建筑技术开发,2003,30(3):42-45.

[13]杜万里,郭红霞,王群.原位复合纳米SiO2改性脲醛木塑复合材料制备[J].中国塑料,2006,20(10):64-67.

[14]时尽书,李建章,周文瑞,等.脲醛树脂与纳米二氧化硅复合改善木材性能的研究[J].北京林业大学,2006,28(2):123-128.

[15]许福,张平,万辉.纳米技术应用于木材改性的实验研究[J].湘潭大学自然科学学报,2005,27(2):80-83.